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Introduction

Many systems and processes that appear in nature can be modelled by dif-
ferential equations. Some can be solved explicitly, so that their solutions
are known for all times that the conditions are valid. Most, however, are not
so tractable; analytic approximations that are valid near certain regions can
allow us to extract some useful and important information such that much
of the overall dynamics can be pieced together. With the advent of modern
desktop computing, however, it has become possible to perform numerous
calculations that approximate the full equations of motion directly.

One such complicated system is the N -body gravitational problem - essen-
tially that of the Solar System. A common feature of such complicated
systems is chaos and the emergence of unexpected structures from often
elegant systems of equations. The Solar System is rife with examples of
unexpected, interesting and beautiful structures, from the (seemingly, but
not really) clockwork motion of the elliptical orbits of the planets to the
majesty of Saturn’s rings. Among such structures are the Kirkwood gaps,
little known outside those who study the Solar System in detail, whose ori-
gins are now thought to lie in overlapping resonances with Jupiter resulting
in unstable chaotic trajectories that ultimately lead to the ejection of aster-
oids from these small bands of the total asteroid belt between Mars and
Jupiter.

Numerical methods allow us to use computers as experimental apparatus to
study systems whose natural scales are beyond our ability to observe easily
- in the case of the Solar System and its long term evolution, and more par-
ticularly here understanding the formation of the Kirkwood gaps - and to
test the models we have constructed. To do so, however, requires relevant
tools, such as numerical integration techniques that preserve fundamental
properties of the system of interest. For a system that can be written as
a Hamiltonian, like the N -body problem, a symplectic integrator will pre-
serve fundamental geometric properties of the system’s phase space and
remain stable for integrations over remarkably long time spans (millions to
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INTRODUCTION vii

tens of millions of years), unlike other integration schemes such as Runge-
Kutta (which can in fact be more accurate for shorter-time integrations, for
a given number of time steps) ([1]).



CHAPTER 1

Background and Motivation

1.1. The Kirkwood Gaps

First discovered in the 1860s by Daniel Kirkwood, the Kirkwood gaps are
“underpopulated” regions of the asteroid belt between Mars and Jupiter that
occur in the vicinity of certain small-number mean motion resonances with
Jupiter.

The main Kirkwood gaps occur at the 4:1, 3:1, 5:2, 7:3 and 2:1 mean mo-
tion resonances with Jupiter, respectively corresponding to semi-major axes
of 2.06, 2.5, 2.82, 2.95 and 3.27 AU. Weaker gaps appear at 1.9 AU (9:2
resonance), 2.25 AU (7:2 resonance), 2.33 AU (10:3 resonance), 2.71 AU
(8:3 resonance), 3.03 AU (9:4 resonance), 3.075 AU (11:5 resonance), 3.47
AU (11:6 resonance), 3.7 AU (5:3 resonance). Figure 1 shows the spacing
of the major Kirkwood gaps.

Originally, the Kirkwood gaps were thought to be sufficiently explained by
simply an extra gravitational tug at the point in an asteroid’s orbit where it
passed closest to Jupiter. For example, in the 2:1 resonance, the asteroid
makes two revolutions about the sun for every one of Jupiter. In this model,
the extra strong tug every two revolutions of the asteroid was believed to
add up over a long time to such a degree that the 2:1 resonance and the
narrow region around it would be depleted of asteroids. However; detailed
analysis has shown that this effect is insufficient to account for the depletion
we see.

More recent studies ([2], [3], [4], [5], [6], [7], [6], [8]) have shown that
unstable chaotic regions may form in the location of the major resonances,
particularly the 3:1 resonance, though the effects of Saturn appear to be
necessary to account for the level of depletion we observe by “mixing out”
stable pockets that would otherwise remain [2].

1



2 1. BACKGROUND AND MOTIVATION

FIGURE 1. Histogram of asteroids by semi-
major axis. The major Kirkwood gaps are
clearly visible. Image courtesy of the MPC:
http://www.cfa.harvard.edu/iau/lists/MPDistribution.html

Studies by Wisdom ([9], [10], [11]) suggest that while chaos induced by
Jupiter at the 3:1 resonance may be responsible for large excursions of ec-
centricity after several thousand years of apparently regular behaviour, it is
Mars that actually removes the asteroid by direct perturbation.

1.2. Resonance

A mean motion resonance occurs when the ratio of the orbital periods of
two co-orbiting bodies is itself rational; i.e., the orbital period of a body is
T1 = p

q
T2, where p and q are integers. Resonances are abundant in the Solar

system and require special treatment to be understood properly from an an-
alytical standpoint, as naïve approaches often fail. Murray & Dermott give
an excellent treatment of the topic in Chapter 8 of Solar System Dynamics,
[12].

As the rationals are dense in R, it seems odd, perhaps, that the Kirkwood
gaps only appear near small integer resonances with Jupiter. Murray and
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Holman in [13] provide a summary of how overlapping resonances produce
large scale chaos, which can expose the asteroid to a larger volume of phase
space than would otherwise be available - possibly leading to encounters
with other bodies.

1.3. Chaos

Chaos is defined as sensitive dependence on initial conditions. This sensi-
tive dependence results in an exponential divergence between trajectories
with “nearby” initial conditions. Any system with enough coupled degrees
of freedom may express chaotic effects, such as the coupling implicit in
mutual gravitational attraction for the N -body problem, with N > 2.

Chaotic systems can be characterised by a specific time scale, called the
Lyapunov time, which is defined as the time taken for two nearby trajecto-
ries to diverge exponentially by a factor of e.

1.4. Statement of problem

This project is a numerical investigation of the chaotic behaviour of aster-
oids in the asteroid belt between Mars and Jupiter, using symplectic aglo-
rithms that do not become catastrophically inaccurate over long term inte-
grations (on the order of millions to hundreds of millions of years). Specif-
ically, I wish to discover if I can replicate the effect of unstable chaotic
zones believed to be responsible for the Kirkwood gaps at specific mean
motion resonances with Jupiter and investigate the significance of Saturn in
the formation of the Kirkwood gaps.

A Hamiltonian approach to the equations of motion of the system will be
used, as that is the basis of symplectic integration. Second and fourth order
symplectic routines will be implemented in an appropriate language and
tested on a simple Hamiltonian system, and then used to integrate the 3-
and 4-body problems in 3 spatial dimensions.

1.4.1. The asteroid’s dynamics. To understand the dynamics of the
asteroid, it is useful to calculate its osculating orbital elements (described
in appendix A) - that is, its orbital elements (eccentricity, semi-major axis,
inclination, argument of perihelion, ascending node and true anomaly) as if
in any instant it exists only in a two-body system composed of the asteroid
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and the Sun (also called the Kepler problem). By tracking the changes of
eccentricity e and semi-major axis a with time it is possible to tell whether
the asteroid is in a stable orbit (e often librates like small-amplitude, high-
frequency sinusoids superpositioned with large-amplitude, low-frequency
sinusoids and a is nearly constant) or unstable (e varies widely and aperi-
odically, a can vary visibly, sometimes resulting in a new stable orbit).

1.4.2. Accuracy. As the computer acts as an experimental laboratory
for this problem, it cannot be assumed that the output of a program that nu-
merically integrates the equations of motion truly represents the dynamics
of the real system. Roundoff error is unavoidable and must be estimated
and accounted for, and the accuracy of the integration routines themselves
must also be tested.



CHAPTER 2

Methods

2.1. Hamiltonian Representation

The Hamiltonian is of the separable form H(p, q, t) = T (p) + V (q) and is
independent of t. We have

T =
1

2

n∑
i=1

p2
i

mi

and

V = −
N∑
i=2

i−1∑
j=1

Gmimj

|qi − qj|
,

where N is the number of bodies, mi, pi and qi are respectively the mass,
momentum and position of body i. m is scalar, pi and qi are 3-vectors
parametrised by time, while pi and qi represent the magnitudes of these
vectors.

The Hamiltonian formulation gives 6N coupled ODEs for the equations of
motion, and the system has 3N degrees of freedom. Each body has three
degrees of freedom and my simulations will have four bodies (the sun, an
asteroid, Jupiter and Saturn), so 24 equations in total (x, y, z, px, py, pz for
each body) - 18 when Saturn is neglected.

We have

q̇i = ∇piH =
pi
mi

5



6 2. METHODS

and

ṗi = ∇qiH = −Gmi

n∑
j=1
j 6=i

mj(qi − qj)

|qi − qj|3
.

The vector differential operator ∇x works the same as ∇, but specifically
applies only to the vector variable x.

2.2. Symplectic Mapping and Geometric Integration

Symplecticity is a geometric property of Hamiltonian systems. A symplec-

tic matrixM has the property thatM∗JM = J , where J =

(
0 I3N

−I3N 0

)
,

I3N is the 3N ×3N identity matrix (to be consistent with the number of de-
grees of freedom above) and M∗ = M−1 is M ’s adjoint.

An important feature of symplectic mapping/phase space structure is that
volume in phase space is conserved under the flow of solutions (i.e. Liou-
ville’s theorem is a consequence of symplecticity).

2.3. Integration Schemes

2.3.1. First order approach. To derive the integrator begin with Eu-
ler’s method:

Approximate the time derivatives in the equations of motion by

qin+1 − qin
τ

= ∇pinH

pin+1 − pin
τ

= ∇qinH,

where qin = qi(tn), ∇qinH = ∇qiH|t=tn (similarly for pin) and τ =
tn+1 − tn. This gives us
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qin+1 = qin + τ∇pinH

pin+1 = pin − τ∇qinH.

As this stands it is not symplectic, but it becomes so if in the second equa-
tion qin is replaced by qin+1 (the map M obtained by this change preserves
symplectic structure: i.e. M∗JM = J). This is still only a first order
algorithm, but the composition of this map with its adjoint (swap n with
n+ 1 and replace τ by −τ and solve for qin+1 and pin+1 to get the adjoint
map) creates a second order method called the Störmer-Verlet, or leapfrog
routine, which is symplectic (compositions of symplectic maps are sym-
plectic: M∗

compJMcomp = M∗
2M

∗
1JM1M2 = M∗

2JM2 = J , if M1 and M2

are symplectic).

2.3.2. Derivation of leapfrog algorithm. Let the symplectic Euler map
with timestep τ be Φτ , and let its adjoint be Φ−1

τ .

Φτ : qin+1 = qin + τ∇pinH

pin+1 = pin − τ∇qin+1
H

Φ−1
τ : pin+1 = pin − τ∇qinH

qin+1 = qin + τ∇pin+1
H.

To compose these maps, introduce a “half timestep” n + 1
2

and use a step
size of τ

2
. Now we compose Φ τ

2
◦ Φ∗τ

2
:

qin+ 1
2

= qin +
τ

2
∇pinH −→(1)

pin+ 1
2

= pin −
τ

2
∇qin+1

2

H −→(2)

pin+1 = pin+ 1
2
− τ

2
∇qin+1

2

H−→(3)

qin+1 = qin+ 1
2

+
τ

2
∇pin+1

H −→(4).

Sub (2) into (3) to get pin+1 = pin − τ∇qin+1
2

H and we have
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qin+ 1
2

= qin +
τ

2
∇pinH

pin+1 = pin − τ∇qin+1
2

H

qin+1 = qin+ 1
2

+
τ

2
∇pin+1

H.

The composition Φ∗τ ◦ Φτ produces a similar map

pin+ 1
2

= pin +
τ

2
∇qinH

qin+1 = qin − τ∇pin+1
2

H

pin+1 = pin+ 1
2

+
τ

2
∇qin+1

H.

The calculation of force in∇qin+1
H is an O(N2) operation (where N is the

number of bodies) over all bodies i per time step, while ∇qinH is O(N)
over all i. Thus when this is taken into account, the former version of the
leapfrog algorithm is more efficient. Both are accurate to second order.

The leapfrog scheme derives its name from the fact that it computes a “sub-
step” n+ 1

2
, from which one can complete the full time step.

2.3.3. Fourth order Forest & Ruth. This routine was independently
discovered and published by Forest & Ruth [14], Candy & Rozmus [15]
and Yoshida [16] circa 1990. Yoshida in particular gives an elegant way to
derive the integration coefficients for higher even-order symplectic routines
for separable Hamiltonians, though none are used in this project. Higher
order routines would only be of value with higher numerical accuracy or
much larger time steps.

2.4. The Integrator

In general, the routine for an even-order, symmetric symplectic integrator
suitable for separable Hamiltonians has two arrays of integration coeffi-
cients (a and b, say), whose lengths arem andm−1. The routine calculates
2m− 1 substeps (in both p and q) in going from step n to step n+ 1.
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For example, the leapfrog algorithm has arrays of integration coefficients
a1 = 1

2
, a2 = 1

2
and b1 = 1 (thus m = 2) and has the form

• qn+ 1
2

= qn + a1τ∇pH|n;
• pn+1 = pn − b1τ∇qH|n+ 1

2

• qn+1 = qn+ 1
2

+ a2τ∇pH|n+1,

exactly as before. Note that aj = am−j+1 and bj = bm−j for integer 1 ≤
j < m.

This generalises for arbitrary m:

• qn+ 1
m

= qn + a1τ∇pH|n;
• pn+ 1

m−1
= pn − b1τ∇qH|n+ 1

m

• qn+ 2
m

= qn+ 1
m

+ a2τ∇pH|n+ 1
m−1

...
• pn+1 = pn+m−2

m−1
− bm−1τ∇qH|n+m−1

m

• qn+1 = qn+m−1
m

+ amτ∇pH|n+1.

Alternatively, p and q can be swapped to produce a different algorithm of
the same order.

More generally, however, a and b are of the same length m, but the first
or last element of b or a (respectively) is in fact 0. McLachlan and Atela
in [17] show that this is not optimal in terms of theoretical accuracy. The
optimal second order routine has coefficients a1 = 1√

2
, a2 = 1 − 1√

2
and

b1 = 1√
2
, b2 = 1− 1√

2
. This algorithm is not used here, however, as it is not

symmetric.

2.4.1. Error Testing. Because the system is Hamiltonian, it is exactly
time reversible. Thus it is possible to replace t by −t everywhere in the
equations of motion with the new solution representing the flow of the for-
mer solution backwards in time. Also, both the leapfrog and Forest & Ruth
integration algorithms are symmetric in the time step, so the same routine
can be used to integrate both forwards and backwards in time. Therefore,
a good way to discover the amount and effect of numerical error may be to
run the integrator forward for a given length of time, T , say, set p = −p
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and allow the integrator to continue until t = 2T . Because of the aforemen-
tioned symmetry, this has the same effect as reversing the time flow and
returning to t = 0; ideally, when t = 2T the system will be in the same
spatial configuration as it was when t = 0. Finite-precision arithmetic will
prevent this from ever being the case, but the closer the agreement between
configurations the better.

Estimations of the amount of truncation error are discussed in section 3.1.

2.4.2. MATLAB implementation. A complete listing of the MATLAB
source code is given in appendix F1. Initial conditions are found in [18],
but are given in appendix B for convenience.

The main integrations routines are asteroid_integrate, asteroid_resume_run.
The former begins with the initial conditions and integrates forward a given
number of steps (storing data to a buffer every storefrequency steps and
dumping the buffer to disk when full) and finishes. However, a flag may
be set that reverses the flow (as discussed above) and continues to integrate
until the system reaches t = 2T , equivalent to t = 0.

It is important to be able to choose arbitrary (within reason) initial condi-
tions for the asteroid, in particular specifying its mean motion relative to
Jupiter and its eccentricity. Limitations on the exact arbitrariness of the as-
teroid’s initial conditions are discussed in section 3.2.2, and the means of
determining its exact position and velocity from the desired relative mean
motion and eccentricity, given the necessary restrictions, are shown in ap-
pendix C.

The routine asteroid_resume_run scans through the data stored on disk and
attempts to resume an integration run by taking the last completely recorded
set of data (positions and momenta for each body) and uses this to resume
a run that has been interrupted part way through. It is designed to resume
a run at any possible stage - during its forward part and continue its reverse
run (if any) or during the reverse stage of a run.

If the eccentricity of the asteroid at any stage exceeds 0.8, the run is termi-
nated, as it has certainly become a Mars (or even Earth or Venus) crosser
for any given semi-major axis within the main asteroid belt and is likely to
be removed from the zone of interest due to close encounters.
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MATLAB, being an interpreter for its code, takes several days to compute
108 time steps, as we routinely wish to do, so a faster solution is much
desired.

2.4.3. Simple tests. A test to make sure the algorithms work correctly
is the simple harmonic oscillator, whose Hamiltonian is H = 1

2
(p2 + q2)

with general solution q(t) = A cos(t) + B sin(t) and p(t) = −A sin(t) +
B cos(t). Given initial condition q0 = 1, p0 = 0, the particular solution is
q(t) = cos(t), p(t) = − sin(t).

This was implemented in MATLAB, and short tests were conducted for 100
time steps of τ = 0.1. Figures 1a and 1b show the calculated evolution of
the system (solid lines) along with the exact solutions (dotted lines), while
1c and 1d show the differences between the calculated solutions and the
exact solutions. The fourth order integrator performs approximately two
orders of magnitude better than the leapfrog integrator over the short time
investigated.

2.4.4. Fortran implementation. The Fortran implementation is simi-
lar to the MATLAB version, but integrates the functions of the two routines
above into one executable. It is also capable of reading through batches
of initial conditions and parameters (number of steps, buffering frequency,
buffer size, etc.) to ease the process of doing large numbers of integrations.
It also reduces the time taken to integrate 108 time steps from nearly a week
down to less than a day, thanks in part to the efficiency of its compilers as a
mature language.

Although efficiency was already much improved by porting the integrator
to Fortran, further improvement could have been made by recognising that
the matrix of forces between bodies is antisymmetric on the main diagonal
(expected from Newton’s third law of motion). The force matrix has ele-
ments Fij , the force exerted on body i by body j, where 1 ≤ i, j ≤ N
(N being the number of bodies) and i 6= j. It would have been possible to
calculate only the forces Fij with 1 ≤ i < j ≤ N and then set Fji = −Fij ,
effectively halving the time taken to calculate all the forces.

The source for the Fortran implementation is given in in appendix F2, while
the data file containing the initial conditions is given in appendix F2 and
an example parameters file in appendix F2. The initial conditions are ar-
ranged in arrays of velocity and position for each spatial dimension indexed
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(A) Leapfrog result (B) Fourth order result

(C) Leapfrog difference (D) Fourth order difference

FIGURE 1. Results of a simple test of the leapfrog and
fourth order routines integrating the simple harmonic oscil-
lator.

by body (Sun = 1, asteroid = 2, Jupiter = 3, Saturn = 4). This may at first
seem perverse (more straightforward to have a three-element vector for each
body, indexed by the x, y and z dimensions), but it is in fact easier to ac-
commodate an arbitrary number of bodies this way and associate it with the
correct mass, given as an array set in the parameters file.
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2.5. Interpreting Output in MATLAB

There are two main routines to interpret output data from the integrator:
asteroid_plot and asteroid_compare_runs. Both read position and momen-
tum data from files (along with metadata that contain details such as the
time step size, the buffering frequency, whether to look for reversed flow
data, etc.) and constructs arrays which contain the osculating orbital ele-
ments for each body (although they are not well defined for the Sun, being
the primary body), making it possible to plot the orbital elements against
time and examine how the orbits change. The latter routine is useful for
plotting the differences between two orbits that begin close to one another
and determining the rate of divergence between them.



CHAPTER 3

Discussion

3.1. Numerical Error

A consequence of finite-precision arithmetic is numerical error, beyond any
approximations inherent in the computational routine itself. A large source
of error for the symplectic routines is roundoff. Double precision arithmetic
has about sixteen digits of accuracy, so when adding or subtrating a number
10n smaller than another, n digits of the smaller are truncated. If n ≥ 16,
adding the smaller number is the same as adding nothing at all without
resorting to higher levels of precision (and consequently lower speeds if the
computational architecture is not built to suit). Even if n ∼ 10, in double
precision, the number may be small enough that its effects can be swamped
by numerical error elsewhere in the routine.

An estimation of the error of the leapfrog and fourth order routines follows.

3.1.1. Estimating roundoff in leapfrog. To calculate the new position
and momentum at each timestep, the leapfrog routine calculates a middle
value of the position as a “stepping stone”. In each integration step, the
velocity of each body is multiplied by half the time step and added to the
position, the total force on each body is multiplied by the time step and
added to the momentum, and finally the updated velocity is multiplied by
half the time step and added to the position. Roundoff is most likely to
occur in the calculation of the force (especially if two bodies become near
one another1) or in the addition step as position or momentum is updated.

1Though should this happen, typically the system will no longer be interesting and
the asteroid will no longer be in the main belt. Jupiter and Saturn are almost certainly not
going to interact too closely; nor are they likely to make a such close approach to the Sun
at any point that this aspect of numerical error should rear its head.

14
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During the calculation of the force, provided the bodies are “reasonable”
distances apart, the greatest source of roundoff will come from vastly dif-
fering masses. Index the bodies by Sun = 1, asteroid = 2, Jupiter = 3 and
Saturn = 4. Now m1 ∼ 1, m2 ∼ 10−15, m3 ∼ 10−3, m4 ∼ 10−4 and
p1 ∼ 10−5, p2 ∼ 10−17, p3 ∼ 10−5, p4 ∼ 10−6. Also, G ∼ 10−4.

Gravity between each body is Newtonian, i.e. Fg = Gm1m2

r212
, where r12

is the distance between the bodies (relativity is neglected, but is discussed
in section 3.2.6). For the Sun-asteroid-Jupiter-Saturn system, approximate
average distances are

Asteroid Jupiter Saturn
4 5 10 Sun

4 10 Asteroid
10 Jupiter.

Therefore the magnitudes of the forces between bodies are approximately
averaged

Asteroid Jupiter Saturn
10−20 10−8 10−10 Sun

10−23 10−25 Asteroid
10−13 Jupiter.

Compare these values to momenta and we find that the force between the
Sun and the asteroid results in a change of momentum 10−15 relative to the
Sun’s momentum at the prior time step and 10−3 relative to the asteroid’s
momentum if the timestep is of order 1. This means that all but one digit
of the Sun-asteroid force is truncated when added to the Sun’s momentum
per the calculations, but only three are digits truncated when the force is
applied to the asteroid. The following array is generated showing how much
truncation takes place:

Sun Asteroid Jupiter Saturn
0 15 3 5 Sun
3 0 6 8 Asteroid
3 18 0 8 Jupiter
4 20 7 0 Saturn
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This unfortunately means that there will be times during the asteroid’s orbits
where it effectively exerts no force on Jupiter or on Saturn if its mass is too
low or the timestep too small, as force × time step results in a relative
change of momentum smaller than machine precision.

Because it computes more substeps per timestep, the fourth order routine
potentially suffers more roundoff error, as its integration coefficients are
smaller for each substep.

Roundoff could be reduced by increasing the mass of the asteroid (which
is justification in itself to do so). However, the total mass of the asteroid
belt is ∼ 10−9 Earth masses, with ∼ 80% of that mass contained in Ceres,
Pallas and Vesta, the three largest asteroids ([19]), leading to the decision to
use such a small mass.

3.1.2. Tradeoff between energy and angular momentum conserva-
tion. A dichotomy exists between the desire to minimise error in the energy
(as the true system evolves on surfaces of constant H - achieved by using
a smaller timestep) and minimising roundoff error (increasing timestep, for
a given mass of the asteroid). Exact conservation of angular momentum is
proved for the leapfrog algorithm in appendix D, so any variation from the
initial value during a run is due to numerical error only.

Table 1 shows values for variation in energy and angular momentum for
eight runs for two different time steps and two different initial mean motion
ratios with Jupiter (the ∼ 2.8 value is far enough from any Kirkwood gap
not to experience any major resonance phenomena). There is a clear dif-
ference in performance regarding energy conservation between the second
and fourth order routines, though there is little appreciable difference in an-
gular momentum conservation for a given time step, though the runs with
the timestep smaller by a factor of 100 show a corresponding increase by
a factor of 100 in angular momentum error - roughly linear growth in the
error is observed when plotted against time - as they had to integrate 100
times as many time steps for the given length of time.

It is also worth noting that the smaller time steps improve energy conser-
vation by at least two and up to four orders of magnitude. Moreover, with
the smaller timestep, energy conservation differs between the routines by
merely a factor of five, whereas with the larger timestep the fourth order
routine clearly outperforms the second order: it is one hundred times better.
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τ na
nj

Method order ∆H
〈H〉

∆h
〈h〉

43.31572 3.0 2 4.2237× 10−5 9.2900× 10−11

4 4.9482× 10−7 7.5109× 10−11

2.846542263 2 4.2237× 10−5 5.6950× 10−11

4 4.9474× 10−7 5.7681× 10−11

0.4331572 3.0 2 5.5113× 10−9 3.9557× 10−9

4 8.7233× 10−10 4.0091× 10−9

2.846542263 2 5.2549× 10−9 3.8633× 10−9

4 1.1982× 10−9 3.8752× 10−9

TABLE 1. Maximum relative variation in energy (H) and
angular momentum (h) over one megayear for two different
step sizes and two different initial mean motions for each
integration method.

3.1.2.1. Observation on variation in the angular momentum error. A
common feature of each run has been a more or less linear growth in vari-
ations in the angular momentum about a mean value, close to the initial
value. Of particular interest (and a source of some consternation, as it is
unexpected2) was the fact that in runs which reversed the flow to test the ac-
curacy of the integrator (finding how close the system returned to its original
state) the variance of h converged to nearly zero as time returned to zero.

However, the nonzero momentum results in secular growth of each compo-
nent of q (with oscillatory variations about the centre of mass of the system,
which moves with a speed of approximately 6.5 × 10−6 AU per day when
the system consists of the Sun, an asteroid, Jupiter and Saturn). This is
an obvious source of truncation error as the integration continues for long
times; the system can travel tens or hundreds of thousands of AU in millions
of years, while the velocities remain of order 10−1 or smaller.

The size of the truncation error grows linearly with time, but bias in the
algorithm may determine how close the mean angular momentum over long
time will remain to the angular momentum at t = 0. In fact, for some initial
conditions and time steps there is a bias to increase the angular momentum,
while in some it will decrease, and a few show almost no bias at all.

2Error normally grows with the number of steps integrated. Thus even as time for
the system is essentially going backwards, the integration is still in a practical sense going
forward.
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A further observation is that if the flow is reversed, the system will tend (ap-
proximately, with the accumulated errors) towards the origin, so truncation
will fall off as the positions get smaller, and only the sum of any bias will
remain as error in h. Figure 1 shows a plot of the angular momentum as it
evolves forward (blue) and backward (red) in time. The difference between
the two values at t = 0 is of order 10−10 and represents the sum of the error
over both branches of the integration.
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FIGURE 1. An example of the increasing variance of angu-
lar momentum as the system moves away from the origin
(blue) and how the variance decreases again as t→ 0 (red).

This source of numerical error can be controlled by subtracting the drift
velocity from the velocity of each of the bodies, though this explanation for
the anomaly was unfortunately not discovered until too late in the day to
redo most of the runs. Some comparisons were possible, however, between
long-time runs with and without this correction, in order to ascertain its
effect on the dynamics of the system in the long term; that is, whether the
results might still be true to the real system. For the majority of runs, the
relative error remained smaller than 10−8, which is hopefully small enough
that the dynamics are not far off.



3.1. NUMERICAL ERROR 19

When the drift was corrected, relative angular momentum deviations re-
mained within 10−12, with no apparent growth over long time. Thankfully,
resonant and non-resonant regions behave similarly to runs without the cor-
rection. However, as deviations in the angular momentum become large
(around 10−7 relative error - which takes on the order of 107 years) the en-
ergy is seen to no longer remain bounded but instead its mean value follows
a curve of the same shape as the the angular momentum’s evolution in time,
as shown in figure 2. Clearly, if the angular momentum error becomes too
large the energy will drift a long way from the original value and it may
be that the trajectory will cross a separatrix in the true phase space that
otherwise it wouldn’t.
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FIGURE 2. Comparison of: (A) and (B) energy; (C) and
(D) angular momentum. The former of each pair is for the
system with drift included, while the initial momentum is
neutralised in the latter. Both runs started with the asteroid
at perihelion, directly opposite Jupiter’s IC, initial eccentric-
ity e = 0.15, inital mean motion ratio with Jupiter being
nast
njup

= 1.666666666666667 and τ = 43.31572 and ran for
100 Myears. The amplitude of the oscillations in energy at
any time are the same in both plots, but it is clear that the ac-
cumulated errors in the angular momentum can significantly
alter the energy if the system drifts too far from the origin.
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3.2. Neglected Influences

3.2.1. Inner planets. The masses of the inner planets are of order 10−7

to 10−6 M� at most. The average force between the asteroid and Earth (as
it is of a moderate mean distance from the asteroid and the most massive of
the inner planets at 3.0034901×10−6 M�) will be of order 10−26, resulting
in the truncation of 10 digits in calculation of the change in the asteroid’s
momentum, with a step size of order 1. While not negligible (and Mars
will certainly approach close enough to the asteroid to have a significant
effect on inner-belt asteroids, closer in than the 3:1 Kirkwood gap), the inner
planets’ combined mass is added to the sun and their orbital perturbations
ignored. This is because the focus of this study is on the resonant effects of
Jupiter and Saturn, the former of whose gravitational effects on the asteroid
are only swamped by the Sun itself.

3.2.2. Arbitrary ICs for asteroid. The number of possible initial con-
ditions for asteroids in the main belt is vast. The main asteroid belt has
semi-major axes ranging from 2.1 to 3.3 AU and eccentricities concentrated
between 0.05 and 0.35 (cite MPC), with the peak near 0.15. Inclinations
range from 0 ◦ to over 40◦, though the bulk of the asteroids have inclinations
less than 20◦ (though an interesting cluster exist between 20◦ and 30◦, rep-
resenting several families that exist at high eccentricities between several
Kirkwood gaps, exhibiting quite distinct structure in a vs i scatter plots,
as seen in figure 3). Arguments of perihelion are approximately evenly
distributed around the circle. In other words, the space of possible initial
conditions is prohibitively large.

Eccentricity and semi-major axis are chosen to be arbitrary, as semi-major
axis determines orbital period (and thus resonance), and eccentricity is im-
portant to choose arbitrarily, as it plays an important role in resonant dy-
namics. Figure 4 shows the extent of the asteroid belt in its semi-major axis
and its eccentricity.

By restricting the argument of perihelion to be opposite Jupiter’s initial con-
dition (which is not at that point at its node of perihelion), however, the
dynamics may not be appreciably biased. Simulations show that the argu-
ments of perihelion precess for both the asteroid and Jupiter (as expected
for the (n > 2)-body problem), and the asteroid at a much greater rate than
Jupiter. Therefore it is arguable that the initial argument of perihelion has
little influence in determining the secular dynamics of the asteroid, as the
histogram in figure 5 shows.
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FIGURE 3. Scatter plot of inclination i vs. semi-major axis
a, clearly showing the Kirkwood gaps and several major
families of asteroids at high inclinations, distinctly above
the main body of asteroids. Image courtesy of the MPC:
http://www.cfa.harvard.edu/iau/lists/MPDistribution.html

The only orbital elements of concern, then, are inclination and, closely as-
sociated with it, the ascending node. Observations show there are actually
very few asteroids in the plane of the ecliptic (0◦ inclination), but numbers
rise sharply with inclination to tens of thousands of observed asteroids (with
likely many more unknown) with less than 5◦ inclination, with peak num-
bers in a small interval just below 4◦. Simulations show inclination tends
to vary slightly either side of Jupiter’s mean, while some (relatively few out
of the sample of integrations) show large excursions of inclination up to
20◦ either side of Jupiter’s. These orbits in particular tend to coincide with
the major Kirkwood gaps and very fast chaotic divergence of nearby tra-
jectories. What we can conclude is that a more complete numerical survey
should include the ability to arbitrarily choose inclination.

While most of the planets have longitudes of ascending node between 70◦

and 130◦, the asteroids show a distinct pattern in the distribution of their as-
cending nodes, shown in figure 6, almost certainly associated with Jupiter’s
argument of perihelion (275.066◦) and its ascending node (100.492◦), sug-
gesting (along with numerical results) that asteroids are actively perturbed
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FIGURE 4. Scatter plot of eccentricity e vs. semi-
major axis a, including the Trojans and the Greeks in
a 1:1 resonance with Jupiter, which orbit near its L4

and L5 Lagrange points. Image courtesy of the MPC:
http://www.cfa.harvard.edu/iau/lists/MPDistribution.html

out of Jupiter’s exact plane of orbit, even if they instead oscillate around it.
This suggests it may also be worthwhile to be able to arbitrarily choose the
argument of ascending node, as simulations show that the asteroid closely
follows (albeit with greater, librating amplitude) the argument of ascending
node of Jupiter.

3.2.3. Tidal forces and viscous fluid effects. Most numerical studies
of the Solar System involve modelling the planets as point bodies, rather
than as the extended objects they actually are. In addition to this, the most
important bodies (in terms of gravitational presence) are not even rigid;
the Sun is a ball of fluid plasma, Jupiter, Saturn, Uranus and Neptune are
gaseous and fluid. Even the earth has a liquid core, which affects its dy-
namics. Extended bodies do not just experience the gravitational force as
a vector pulling bodies together, but tidal forces act to deform bodies by
squeezing them inwards in the plane perpendicular to the gravitational force
itself and outwards on the vector of the force. It is for this reason that we
have tides in our oceans, and because of fluid friction of the oceans against
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FIGURE 5. Histogram of asteroids by argu-
ment of perihelion. Note the approximately
flat distribution. Image courtesy of the MPC:
http://www.cfa.harvard.edu/iau/lists/MPDistribution.html

Earth’s continents the Earth’s days are getting longer and the moon is re-
ceding. Fluid viscosity also tends to be a stabilising factor in dynamical
systems, so could tidal forces and viscous dissipation be having an effect
on the dynamics of the asteroids?

In reality, this is almost certainly the case. However; if this effect is too
small it is negligible due to truncation. Tidal forces go as 1

R3 , whereR is the
distance between the bodies, therefore falling off much more quickly than
the attractive force between them. Further, it is proportional to the product
of the masses and the radius of the body in question. A simple estimation
yields this force to be on the order of 10−30 between the asteroid and Jupiter
for an asteroid assumed to be several kilometres in diameter (10−7 AU). It
is safe to say without further estimations that the effect of viscosity on the
dynamics of the asteroid is even smaller than the limit of double precision
arithmetic.

3.2.4. Aspherical bodies. A common simplification often found in stud-
ies of the Solar System is that every body is assumed to have a spherical
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FIGURE 6. Histogram of asteroids by longitude of as-
cending node. Note the dips around 100◦, near
Jupiter’s ascending node, and 275◦, near Jupiter’s ar-
gument of perihelion. Image courtesy of the MPC:
http://www.cfa.harvard.edu/iau/lists/MPDistribution.html

gravitational potential. The justifications for maintaining this simplification
are: (a) convention and simplicity in the context of the scope of the project;
and (b) most of the interesting motion happens in or near a single plane of
motion and all the bodies (except possibly the asteroid) are “pretty close”
to spherical.

3.2.5. Loss of mass from the Sun through radiation. Solar mass is
estimated to be lost at a rate of five million tonnes per second. This is
equivalent to approximately 2 × 10−16 solar masses per day, a negligible
amount per time step.

3.2.6. Relativity. The article by Benito & Gallardo [20] discusses nu-
merical simulations of relativistic versus classical models of the solar sys-
tem. Their finding is that relativistic effects from the Sun play an important
role in the secular dynamics of the inner planets. The relativistic correction
factor to the acceleration due to the Sun used in [20] was proposed in 1975
by Anderson et al. [21] is
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∆r̈ =
GM�
r3c2

[(
4GM�
r

− v2

)
r + 4(v · r)v

]
.

In units of AU per day, the speed of light is approximately 173.1446, and
substituting a typical distance r = 2.25 and speed v = 0.0120, M� = 1 and
G = 2.95912208286, the correction is ∆r̈ = −8.8198e − 012. This is not
below the limit of precision, but certainly negligible for short integrations
and prone to strong truncation using only double precision arithmetic. [20]
shows that over the course of megayears relativistic effects may change the
dynamics of an asteroid’s orbit, but it is simply beyond the scope of this
project to incorporate relativity.

3.2.7. Outer planets beyond Saturn. Although it is certain that per-
turbations from Uranus and Neptune contribute to the asteroids’ dynamics
in reality, it follows from the estimations in section 3.1.1 that truncation and
accuracy will be a huge problem when updating the momentum based on
the forces between the massive outer bodies and the minuscule asteroid.

3.3. Continuing Discussion: Drift of the Solar System

Using the initial conditions for the outer planets and the Sun given in Hairer,
Lubich and Wanner [18], it is observed that the centre of mass of the system
moves with constant velocity. Indeed, on checking, the initial momentum
of the system is nonzero, and as expected the total momentum remains con-
stant in time (barring numerical errors which mirror those observed in the
angular momentum). As discussed in section 3.1.2.1, this was responsible
for a great deal of roundoff error later in most runs. For runs less than about
10 megayears, direct comparison shows this error does not appear to affect
the particular dynamics for any set of initial conditions.

Even out to 50 megayears, keeping in mind the chaotic divergence of tra-
jectories and perturbations from numerical error in the drifting system, the
way that the orbital elements evolve (regular or chaotic variations) is simi-
lar in both systems. Figures 1 through 11 in Appendix E illustrate this for
several resonant and nonresonant orbits.
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3.4. Desired Integrations

In order to get some idea of the chaotic structure of the asteroid belt, it is
necessary to do a large number of integrations from a large sample of initial
mean motions and eccentricities. Ideally it would be possible to do enough
runs from enough initial conditions and account for Mars crossings do sta-
tistical calculations on the numerically determined asteroid “belt” (since
only one asteroid’s orbit is evaluated at a time) comparing its structure to
that of the real asteroid belt.

Given the restrictions imposed, however, we will do a series of short (1
Myear) integrations for initial Jovian mean motion resonances ranging from
4.3 to 1.2 in increments of 0.1 and initial eccentricities of 0.05, 0.15, 0.25
and 0.35, both with and without Saturn. This will offer some idea of how
much both direct and indirect (through modifications to Jupiter’s orbit)
perturbations from Saturn affect the asteroids’ orbits, though it is not a
fine enough sample space to cover many of the Kirkwood gap resonances.
Longer integrations will examine the long term behaviour of the asteroid
in various resonant and nonresonant orbits, while other runs will examine
what happens to orbits with nearby starting conditions both with and with-
out Saturn.

Runs must also be conducted so that error can be tested; to find out how
badly numerical error affects the reversibility of the system (and thus pro-
jections for its accuracy in general). Unfortunately many runs were com-
pleted with the roundoff-inducing drift in place and not enough time re-
mained to redo these integrations with the initial momentum compensated
for. The vast majority of these runs, however, were short (∼ 1 Myear), and,
as discussed, comparisons show the dynamics are not significantly altered
over such time spans.

3.4.1. Expected results. Integrating the full equations of motion for
the system of the Sun, an asteroid, Jupiter and Saturn should result in
chaotic motion with short Lyapunov times (∼ 105 years) in regions like
the 3:1 resonance, exhibiting periods of seemingly regular evolution of the
orbital elements interspersed with periods where the eccentricity rises into
a region where an interaction with Mars or Jupiter is probable.

In nonresonant orbits, linear or polynomial divergence of nearby trajectories
is expected, with entirely regular orbits; showing only regular variation in
the orbital elements.
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When Saturn is excluded from the integrations, Jupiter’s orbit will be al-
most Keplerian: the force exterted on it by the asteroid will result in only a
tiny change in Jupiter’s momentum, so precession will be near (if not) neg-
ligible. On the other hand, the asteroid will still experience perturbations
from Jupiter, but these perturbations will be more constant in strength, due
to its orbital elements changing less in time. Thus is is expected that aster-
oids in resonant orbits will experience weaker chaos or remain bounded in
smaller pockets of chaotic motion (which may or may not lead to ejection
from the resonance).

Meanwhile, orbits away from Kirkwood gaps are expected (naïvely, from
knowledge of the actual distribution of asteroids in the asteroid belt) to be
similarly less perturbed and more stable, even over very long time spans.

3.4.2. Mars/Jupiter Interaction Thresholds. Figure 7 shows the thresh-
old line for an asteroid of a given semi-major axis (7a) or mean motion ratio
(7b) to become a Mars crosser - that is, to have eccentricity large enough
that part of its perihelion distance within the orbit of Mars (which has semi-
major axis 1.52 AU and eccentricity 0.093).
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FIGURE 7. The eccentricity threshold, above which an as-
teroid will become a Mars crosser and will probably be
ejected from its resonance by direct perturbations from
Mars.
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Similarly, if the aphelion distance of the asteroid becomes far enough out,
there is the possibility of a large perturbation from Jupiter. Figure 8 shows
the threshold eccentricity at which the aphelion distance of the asteroid’s or-
bit will pass beyond Jupiter’s perihelion distance. Depending on the nature
of the resonance, close approaches with Jupiter may or may not be possible
(but there are more orbits in total where they are), and approaches need not
be as close to Jupiter to have the same effect as an approach to Mars.

Perihelion distance can be determined from the orbital elements by a(1−e).
Similarly, aphelion distance is given by a(1+e). These simple relationships
come from the geometry of an ellipse with one focus at the origin.
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FIGURE 8. The eccentricity threshold, above which an as-
teroid’s aphelion distance will exceed Jupiter’s perihelion
distance and become likely to be swept out by Jupiter’s large
gravity.
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τ Method order Drift |qa(0)− qa,r(0)| |qj(0)− qj,r(0)|
10.00 2 y 2.5050503× 10−2 3.2386714× 10−4

n 1.0236731× 10−4 7.1825833× 10−6

4 y 8.0377675× 10−3 2.1732859× 10−3

n 5.4588679× 10−6 5.9034100× 10−6

1.00 2 y 2.4001855× 10−3 1.9625345× 10−3

n 3.2216039× 10−6 2.5399603× 10−6

4 y 2.3510936× 10−3 9.4165100× 10−4

n 1.9090611× 10−5 2.1089969× 10−5

TABLE 2. Accuracy of the two algorithms for step sizes
τ = 1.00 and τ = 10.00 both including and excluding drift
induced by nonzero initial momentum in terms of how close
the system returns to its initial configuration when the flow
is reversed. qi,r(t) denotes the position of body i at time t
for the reversed flow. Only Jupiter and the asteroid are con-
sidered; the other larger bodies are roughly comparable to
Jupiter for the sake of judging accuracy.

3.4.3. Error-testing runs. Several runs were conducted wither their
flow reversed after they reached 1 Myear. This distance between their final
position and their initial position indicates the total of both the accuracy
of the integration routine and the accumulated effect of roundoff over effec-
tively 2 Myears (complicated in the case where the system drifts because the
roundoff reduces again as t→ 0 and the system tends back to the origin).

The runs illustrated here all have initial conditions e = 0.35 and nast
njup

=

2.00 and step sizes of τ = 1.00 and τ = 10.00. Note that under normal
circumstances this orbit would start already as a Mars crosser, but this is
less relevant as here all we want is to sample the accuracy.

Table 2 shows the differences between positions for Jupiter and the asteroid
at t = 0 between the initial condition and the “final” value of the reversed
run. There is a clear advantage when the initial momentum is neutralised,
generally an improvement of 2-3 orders of magnitude. Step size also plays
a role: when τ is smaller the leapfrog routine tends to perform better than
the fourth order routine and vice versa.
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(A) τ = 10, second order, drift. (B) τ = 10, second order, no drift.

(C) τ = 10, fourth order, drift. (D) τ = 10, fourth order, no drift.

FIGURE 9. Difference in asteroidal eccentricity between
forward and reversed flows for τ = 10. Initial conditions
are identical, given in paragraph 2 of section 3.4.3.

Figures 9 and 10 show the divergence in eccentricity of the asteroid for the
same set of runs as in table 2. Note that the divergence appears polynomial
for this resonance over this time scale.
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(A) τ = 1, second order, drift. (B) τ = 1, second order, no drift.

(C) τ = 1, fourth order, drift. (D) τ = 1, fourth order, no drift.

FIGURE 10. Difference in asteroidal eccentricity between
forward and reversed flows for τ = 1. Initial conditions are
identical, given in paragraph 2 of section 3.4.3.

3.4.4. Megayear Runs. Runs integrated for one megayear were started
at grid points over the two dimensional initial condition space as oulined
above, both with and without Saturn. Each run is named by its initial con-
dition: “e15n33” is the run starting with e = 0.15 and nast

njup
= 3.3. A prefix

“ns” indicates the run neglected Saturn. These runs were begun before the
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analysis of error regarding step size and the order of the routines was com-
pleted, so for consistency’s sake they were continued with the same step
size (τ = 1.0 days) with the fourth order algorithm. A prefix “ls” indicates
a larger step size of τ = 43.31572 days3 was taken, as the shorter integration
time with this step size made it feasable to do a set to compare the dynam-
ics between the step sizes across a broad spectrum of the initial condition
space, though this was not possible for the runs without Saturn.

While there are too many megayear runs (84 with Saturn and 84 without)
to present all of them, some results of particular interest emerge. Results
when Saturn is neglected will be discussed after the 4-body results.

3.4.4.1. Mean motion ratio 4.0 ≤ nast
njup
≤ 4.3. This region is closer to

the Sun than what is largely considered the inner edge of the main asteroid
belt (the border is often given to be at the 4:1 resonance, but sometimes the
5:1 resonance is considered the inner boundary of the whole asteroid belt).
Semi-major axes range from approximately 1.97 to 2.01 AU, implying that
the eccentricities for such small orbits must remain less than about 0.15 to
0.19 to avoid crossing Mars’ orbit.

Common features of the orbits with Saturn were that the inclinations would
vary periodically on a time scale of approximately 25, 000 years inside an
envelope with a much longer period, seeming to depend on both the mean
motion ratio and the initial eccentricity, as shown in figure 11. Note that the
variations in inclination are regular.

The same runs computed with the smaller step size behave mostly the same,
but with a striking difference at the 4:1 resonance: the eccentricity varies
irregularly for about 200, 000 years in the e05n40 run and then spikes up-
wards past the Mars-crossing threshold and finally passes the 0.8 threshold
just before 500, 000 years. It reaches the e = 0.8 threshold even more
quickly when the initial eccentricity is higher. Contrast this with the ec-
centricity calculated for the corresponding run with the larger step size, as
in figure 12, which remains stable for the duration of the integration for all
initial eccentricities.

Which dynamic is correct? Figure 13 shows the evolution of both the energy
and total angular momentum of the system with time. The energy error in
run e05n40 is comparable to its angular momentum error, three orders of

3This step size is chosen because it is fractional to Jupiter’s orbital period Tj =
4331.572 days.
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(A) lse05n40. (B) lse05n42.

(C) lse15n40. (D) lse15n42.

FIGURE 11. Inclinations for a sample of initial conditions
in the 4.0 ≤ nast

njup
≤ 4.3 range. The motion appears regular,

even at the 4:1 resonance ((A) and (C)).

magnitude smaller than the energy error in run lse05n30, though the angular
momentum error in that run is comparable (if slightly smaller). Given that
the energy error is smaller (at least over this time scale), e05n40 may be
the more accurate; it is possible that the 4:1 resonance exists close to some
separatrix in phase space, allowing lse05n40 to cross into a pocket of regular
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(A) lse05n40. (B) e05n40.

FIGURE 12. Eccentricities for runs with identical initial
conditions but different step sizes at the 4:1 resonance. The
green dotted line represents the Mars-crossing threshold.

motion, or the smaller step size produces a modified Hamiltonian that has a
different phase space structure to the larger step size.

Extra runs for this were computed with the same step sizes using the leapfrog
routine. The results are shown in figures 14 and 15: the large step size
produces dynamics that look completely stable and very regular in the ec-
centricity (figure 15a, while the small step size shows irregular behaviour
and spends most of its time as a Mars crosser (figure 15b). The energy and
angular momentum do not show anything surprising (figure 13).

3.4.4.2. Mean motion ratio 3.1 ≤ nast
njup

≤ 3.9. This range of mean
motion ratios correspond to semi-major axes from 2.10 to 2.45 and is con-
sidered the inner asteroid belt, divided as it is by the 3:1 resonance.

Similar to above, a consistent difference between step sizes for almost this
whole region is apparent between τ = 1 and τ = 43.31572. Figure 16
shows this difference for two runs near the middle of this region, with initial
eccentricity e = 0.15 (approximately the median eccentricity for bodies in
the asteroid belt).
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(A) Energy for run lse05n40. (B) Energy for run e05n42.

(C) Angular momentum for
run lse05n40.

(D) Angular momentum for run e05n42.

FIGURE 13. Energy and angular momentum for for runs
with identical initial conditions but different step sizes at the
4:1 resonance. Maximum errors are: (A) 6.9947× 10−7; (B)
8.0053× 10−10; (C) 9.0773× 10−11; and (D) 3.128× 10−10.

Again the question arises: where does this discrepancy come from? Fig-
ure 17 shows the results of two more megayear runs with initial conditions
e = 0.15 and nast

njup
= 3.3 calculated with a medium step size of τ = 20
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(A) Energy for run 2olse05n40. (B) Energy for run 2oe05n40.

(C) Angular momentum for
run 2olse05n40.

(D) Angular momentum for run 2oe05n40.

FIGURE 14. Energy and angular momentum for for runs
with identical initial conditions but different step sizes at
the 4:1 resonance, calculated using the leapfrog algorithm.
Maximum errors are: (A) 4.8649×10−5; (B) 3.0137×10−8;
(C) 6.2704× 10−11; and (D) 3.7114× 10−10.

days. Figure 17a was calculated with the fourth order routine, while fig-
ure 17b was calculated using leapfrog. In this case, the two routines show



38 3. DISCUSSION

(A) 2olse05n40. (B) 2oe05n40.

FIGURE 15. Eccentricities for runs with identical initial
conditions but different step sizes at the 4:1 resonance as in
figure 12, but calculated using leapfrog instead. The green
dotted line represents the Mars-crossing threshold.

completely different behaviour, even though everything else was the same
between the runs. Interestingly, this discrepancy between the two routines
is not always so apparent. The cause of this discrepancy could be the fact
that nast

njup
= 3.3 is near the 10:3 minor Kirkwood gap, though other runs

closer to the exact resonance make this unlikely.

3.4.4.3. The 3:1 resonance. This resonance marks the middle of the
asteroid belt at a ≈ 2.50 and is perhaps the most studied of the Kirkwood
gaps ([22], [23], [2], [13], [4], [9], [10], [11] and [24], for example).

The charateristic behaviour for an asteroid initially placed in this resonance
with low eccentricity is seemingly regular for thousands of years up to tens
of thousands of years interspersed with spikes of increased eccentricity high
enough that direct perturbations from Mars should remove it from reso-
nance. Murray & Holman in [24] summarise much of the work done by
Wisdom in [9], [10] and [11]

The behaviour of the asteroid in the 3:1 resonance again seems to depend
on the step size used. In figure 18 the eccentricity is plotted against time
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(A) lse15n33. (B) e15n33.

(C) lse15n37. (D) e15n37.

FIGURE 16. Eccentricity vs time for orbits calculated with
τ = 43.31572 ((A) and (C)) and τ = 1.0 ((B) and (C)). The
green dotted line represents the Mars-crossing threshold.

for initial conditions e = 0.15, nast
njup

= 3.0 with step sizes τ = 1 day (18a)
and τ = 43.31572 days (18b). Though the latter shows what looks like
unstable behavior, the former shows behaviour that is much more in accord
with other studies: periods of thousands of years with low eccentricity and
chaotic peaks which cause its orbit to become Mars crossing.
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(A) mse15n33. (B) 2omse15n33.

FIGURE 17. Eccentricity vs time for orbits calculated with
a medium step (ms) of τ = 20.00 days. (A) is calculated
using the fourth order routine, while (B) uses leapfrog. The
green dotted line represents the Mars-crossing threshold.

3.4.4.4. Mean motion ratio 2.1 ≤ nast
njup

≤ 2.9. The outer half of the
main belt has semi major axes from 2.56 to 3.17. Most behaviour within
this region is regular on a one megayear time scale, with the exception of
the 5:2 resonance, whose eccentricity is plotted in figures 19 and 20. This
resonance shows behaviour that is in some respects like the 3:1 resonance,
though much more time tends to be spent as a Mars crosser. The large step
plots show irregular behaviour, but for some reason lack the radical jumps
in eccentricity.

This “damping” appears consistent in all cases when the large time step is
compared to the small time step. As the large time step is a simple fraction
of Jupiter’s orbital period, it is possible that some resonant effects are actu-
ally damped or averaged out in some manner. A fundamental point to keep
in mind when using symplectic integrators is that they do not integrate the
original Hamiltonian but a modified one that depends on the choice of time
step. As such, the system could have a different phase space structure - and
a given orbit may fall on one side of a separatrix or another for a given time
step, even for the same initial conditions.
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(A) e15n30. (B) lse15n30.

FIGURE 18. Eccentricity vs time for orbits in the 3:1 reso-
nance with small time step τ = 1.0 in (A) and τ = 43.31572
in (B). The green dotted line represents the Mars-crossing
threshold.

3.4.4.5. The 2:1 resonance. Located at 3.28 AU, the 2:1 resonance marks
the outer edge of the main belt. Of all the orbits examined so far, this one
shows the greatest accord between the two time steps used to calculate its
orbit (figure 21). Moons gives particular treatment to the 2:1 resonance
in [23], where the formation of the gap is attributed to slow diffusive pro-
cesses, rather than sudden spikes in the orbital elements. Indeed, longer
integrations of this resonance suggest that diffusion from this gap could
take hundreds of millions of years.

3.4.4.6. Mean motion ratio 1.2 ≤ nast
njup
≤ 1.9. This is the region be-

tween the 2:1 resonance and Jupiter itself. The overwhelming result for as-
teroids placed in this region is removal through perturbations from Jupiter.
Some asteroids can survive with low eccentricities (generally less than 0.15)
between nast

njup
= 1.9 and nast

njup
= 1.7, but otherwise they have short life spans

less than 500, 000 years.

The exception to this is the 3 : 2 resonance, known to be home to a pocket
of asteroids called the Hildas, which tend to exist with eccentricities mostly
between 0.1 and 0.3. Integrations showed orbits that looked chaotic, but
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(A) e15n25. (B) lse15n25.

FIGURE 19. Eccentricity vs time for orbits in the 5:2 reso-
nance with small time step τ = 1.0 in (A) and τ = 43.31572
in (B) with initial eccentricity e = 0.15. The green dotted
line represents the Mars-crossing threshold, while the red
dotted line represents the Jupiter crossing threshold.

were often stable for low initial eccentricities. Figure 22 shows two ex-
amples; most orbits with higher eccentricity resulted in the asteroid being
ejected so quickly that the plots over this time scale are uninteresting.
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(A) e35n25. (B) lse35n25.

FIGURE 20. Eccentricity vs time for orbits in the 5:2 reso-
nance with small time step τ = 1.0 in (A) and τ = 43.31572
in (B) with initial eccentricity e = 0.35. The green dotted
line represents the Mars-crossing threshold, while the red
dotted line represents the Jupiter crossing threshold. Note in
(A) that the eccentricity does not spike as erratically over this
time span, though it for this eccentricity still puts it in danger
of removal by close encounter, while in (B) the behaviour
does not look substantially different from 19b, though it
quickly reaches past the Mars crossing threshold and stays
there long enough that removal is practically guaranteed.
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(A) e15n20. (B) lse15n20.

FIGURE 21. Eccentricity vs time for orbits in the 2:1 reso-
nance with small time step τ = 1.0 in (A) and τ = 43.31572
in (B) with initial eccentricity e = 0.15. The green dotted
line represents the Mars-crossing threshold, while the red
dotted line represents the Jupiter crossing threshold. Unlike
other orbits, these two seem to show much more similar dy-
namics to each other.
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(A) e05n15. (B) e15n15.

FIGURE 22. Eccentricity vs time for orbits in the 3:2 reso-
nance with small time step τ = 1.0. Initial eccentricity in
(A) is e = 0.05 and in (B) e = 0.15. The green dotted line
represents the Mars-crossing threshold, while the red dotted
line represents the Jupiter crossing threshold. These orbits
appear chaotic, but stable on a time scale of 1 Myear, though
(B) shows the orbit frequently becoming a Mars crosser -
even at times reaching out past Jupiter.
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3.4.5. Long term behaviour in and out of resonance. Most of the
non-resonant orbits in the main belt show regular behaviour over time scales
longer than a megayear, with only small librations in the orbital elements.
This does not appear to depend too strongly on the choice of time step - im-
portant to note, since most longer runs were computed with τ = 43.31572
before the discrepancy discussed above could become apparent.

The long term behaviour of asteroids initially placed in a resonance depends
strongly on the resonance in which it starts. Moons’ analysis of the 4:1, 3:1,
5:2 and 7:3 resonances ([23]) shows that gravitational interactions and over-
lapping resonances are enough to account for these gaps, and the long term
integrations performed here show signs of chaotic variation in the orbital
elements for each of these resonances except for the 4:1 resonance, which
resembles that in figure 12a.

FIGURE 23. Eccentricity vs time for an asteroid orbiting in
the 2:1 resonance. Initial eccentricity is e = 0.15, and ec-
centricity spikes sharply greater than 0.8 at approximately
350 Myears. The green dotted line represents the Mars-
crossing threshold, while the red dotted line represents the
Jupiter crossing threshold.
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All runs with the asteroid placed in the 2:1 resonance show irregular (but not
particularly unstable) variation in eccentricity. The exception to this rule is
one integration out to 2000 Myears, shown in figure 23. The asteroid spikes
in eccentricity unexpectedly at around 350 Myears and the run is terminated
after the eccentricity exceeds 0.8. This is an interesting result, but unfortu-
nately the error in the angular momentum reaches a relative magnitude of
about 4 × 10−7, which may be enough to seriously impact the accuracy of
this result. Sadly, time did not permit this run to be repeated with either a
different time step or the drift neutralised to see if a similar result could be
repeated.

The general consensus about the 2:1 resonance is that it is not yet well
understood. Overlapping resonances do produce chaotic orbits here, but
do not result in eccentricities high enough for Mars or Jupiter to remove
it; slow diffusive processes are responsible for removing asteroids from the
region of the resonance.

3.4.6. Divergence of trajectories. A small sample of trajectories started
close to one another shows clearly the difference between resonant and non-
resonant orbits. Asteroids were placed with initial na

nj
= 2.0, 2.86358736161824

and 3.0 and run for up to 10 Myears, and sister trajectories, identical except
for a difference in the asteroid’s initial position of 10−14 (approximately
1.5 mm), were integrated for the same length of time. Figures 24-26 show
the results of these runs.
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FIGURE 24. Log distance between trajectories started near
one another in the 2:1 resonance. Total run time was 10
Myears, but the plot is refocused on the region of divergence.
Lyapunov time is approximately 102 years.

FIGURE 25. Log distance between trajectories started near
one another in the 3:1 resonance. Total run time was 10
Myears, but the plot is refocused on the region of divergence.
Lyapunov time is approximately 103 years.
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FIGURE 26. Log distance between trajectories started with
na
nj

= 2.86358736161824, far away from any Kirkwood
gaps. There is no exponential divergence of the trajectories,
at least over this time scale.
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3.5. When Saturn is Removed

When Saturn is excluded from the simulations, the system effectively be-
comes the planar 3-body problem, as Saturn’s orbit being inclined slightly
to Jupiter’s normally results in the asteroid being pulled out of its initial
plane of orbit. However, the main Kirkwood gaps still show chaotic mo-
tion. Figures 27-fig:divergencesns3 show the difference of orbits from the
same initial conditions as figures 24-fig:divergences3 including Saturn, with
similar Lyapunov times, where motion is chaotic.

A common feature of nonresonant runs without Saturn is that librations in
the asteroid’s orbital elements have only one mode - one driving frequency.
This is to be expected, as there is only one body perturbing the asteroid’s
orbit: Jupiter. Resonant orbits that correspond to major Kirkwood gaps look
similarly “cleaner”, but retain the main features that result in the removal of
asteroids.

FIGURE 27. Log distance between trajectories started near
one another in the 2:1 resonance without Saturn. Total run
time was 10 Myears, but the plot is refocused on the region
of divergence. Lyapunov time is approximately 102 years.

The 3:1 resonance also displays similar chaotic behaviour, with periods of
low eccentricity, seemingly regular motion broken by spikes of high eccen-
tricity. The inclination tends to remain almost zero for a long time, but it
can in fact jump to over 10◦ relative to Jupiter.
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FIGURE 28. Log distance between trajectories started near
one another in the 3:1 resonance without Saturn. Total run
time was 10 Myears, but the plot is refocused on the region
of divergence. Lyapunov time is approximately 103 years.

FIGURE 29. Log distance between trajectories started with
na
nj

= 2.86358736161824, far away from any Kirkwood
gaps, without Saturn. There is no exponential divergence
of the trajectories, at least over this time scale.

Of particular interest was the observation of the divergence between nonres-
onant trajectories viewed on a linear scale with and without Saturn (figure
30). In particular, it appears (albeit with a sample size of one) that Saturn’s
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presence may help stabilise orbits that are out of a major mean motion res-
onance.

(A) Divergence of nonres-
onant trajectories with Sat-
urn included.

(B) Divergence of nonresonant trajectories with Saturn excluded.

FIGURE 30. Divergence between trajectories initally sepa-
rated by approximately 10−14 AU (A) with Saturn and (B)
without, viewed on a linear scale over 3 Myears. Note the
difference in vertical scale over this time span.



Conclusion

The results of this study have been a combination of confirming things well
known (for example, the chaotic motion of asteroids in major resonances
and non-chaotic elsewhere), the inconclusive (how trustworthy some of the
longer runs actually are) and the unexpected (if Saturn indeed does have a
stabilising influence on at least some orbits far from major resonances).

Glaring discrepancies in the dynamics between runs with identical initial
conditions when only the time step changes suggest that further work is re-
quired to understand the role that the choice of time step plays in the sym-
plectic integration of chaotic systems: does a time step close to a resonant
frequency of the system affect the dynamics of the numerically integrated
system, or was the ∼ 43.3 day time step too large to capture finer features
of the dynamics of relatively short-period resonant orbits? Certainly it il-
lustrates the care that must always be taken when undertaking numerical
work.

On the other hand, runs where the time step had little relation to any natural
frequency of the system often showed good agreement with results discov-
ered from previous analytical studies of the mean motion resonances, as
well as numerical investigations over the last thirty years of research.

Removing Saturn from the integrations most noticeably results in the as-
teroid’s inclination becoming almost constant and other orbital elements
librating more simply. Perturbations from Saturn may cause more rapid re-
moval of asteroids from the 4:1, 3:1, 5:2 and 7:3 Kirkwood gaps by those
perturbations adding to the underlying chaos of the resonances with Jupiter.
The 2:1 resonance, still not well understood in the literature, appeared to
behave chaotically, but did not suffer any large amplitude variations in its
orbital elements.

The role of Saturn in the dynamics of the asteroid belt is worth further
investigation, however, as the divergence of nearby nonresonant trajectories
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appeared slower over three megayears when Saturn was present than when
it was not. A deeper understanding of the phase space of the asteroid belt
assists in showing where the boundaries of chaotic regions actually lie, as
would larger surveys, such as have already been done by Saha ([22]) and
others, to compare against the known distribution of the asteroid belt.



APPENDIX A

Osculating Orbital Elements

The equations of motion for the two-body gravitational problem can be
solved exactly. It can easily be proven that the motion is planar, linear mo-
mentum of the system is conserved and angular momentum of the system is
conserved. The explicit equations of motion reveal that the paths of the bod-
ies correspond to conic sections (ellipse, parabola, hyperbola) depending on
the energy of the system, which is also constant.

This fact means that orbits can be characterised by six numbers, called the
Keplerian elements:

a) eccentricity e, which sets the shape of the ellipse;
b) semi-major axis a (measured in astronimical units (AU)), which sets

the size;
c) inclination i, which sets the angle of deviation of the orbital plane

from an arbitrary reference plane (called the ecliptic);
d) longditude of ascending node Ω, which sets the line of intersection

between the plane of orbit and the reference plane, measured from
an arbitrary reference direction called the vernal node;

e) argument of perihelion (or periapsis) ω, which defines the orienta-
tion of the orbit in its plane (at what angle the body passes closest
to the centre of mass of the system, measured from the ascending
node); and

f) mean anomaly at epoch M0, which describes how far around the or-
bit’s “auxilliary circle” the body has travelled, measured from peri-
helion.

The auxiliary circle is a circle of radius a, with its centre at the centre of the
ellipse (i.e. when e = 0 the mean and true anomalies coincide). The mean
anomaly is related to the true anomaly ν (which is in fact more easily calcu-
lated from the body’s orbital state vectors r and v, which are position and
velocity relative to the primary body), the angle measured from perihelion
that the body has travelled about the centre of mass.
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FIGURE 1. Illustration of the meaning of the orbital ele-
ments i, Ω, ω and ν. Used under the GNU Free Document
License, Version 1.2. Copryright Lucas Snyder. Source:
http://en.wikipedia.org/wiki/Image:Orbit1.svg.

In the two-body problem, eccentricity, semi-major axis, argument of per-
ihelion, ascending node and inclination remain constant; the only orbital
element that changes is the true anomaly as the bodies orbit their centre of
gravity. In an n-body system for n > 2 like the solar system, the effects
of other bodies perturb the motion of any given body, causing precession:
each revolution the arument of perhelion has shifted slightly further around,
relative to a fixed frame of reference (e.g. distant stars). 1

Another quantity of interest is the mean motion n (measured in revolutions
per day, not to be confused with the number n of bodies in the system),
which is set by the semi-major axis by the relationship

n =

√
GM

a3
,

1Incidentally, this effect on the orbit of Uranus is the basis of Neptune’s discovery:
a discrepancy between published tables of the planets’ orbits and observations of Uranus
prompted mathematical predictions of an extra planet, which was found on the 23rd of Sep-
tember, 1846, within one degree of arc of the location predicted by French mathematician
Urbain Le Verrier.
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where M is the mass of the central body (in solar masses M�) and G is
Newton’s gravitational constant (in AU3M−1

� d−2).

Although the orbital elements in the n-body problem are not constant, they
can still be used to track features of the orbits by calculating them for each
body as if it were instantaneously in the 2-body problem with the sun and it
alone. This intantaneous 2-body orbit is tangential to the true orbit, hence
why the elements calculated thusly are called the osculating elements, from
Latin osculare (“to kiss”).

The equations for the osculating elements are given in [25].



APPENDIX B

Initial conditions for the Sun, Jupiter and Saturn

Body m (M�) q (AU) v (AU d−1)
0 0

Sun 1.00000597682 0 0
0 0

−3.5023653 0.00565429
Jupiter 0.000954786104043 −3.8169847 −0.0041249

−1.5507963 −0.00190589
9.0755314 0.00168318

Saturn 0.000285583733151 −3.0458353 0.00483525
−1.6483708 0.00192462

TABLE 1. Initial conditions for the Sun, Jupiter and Sat-
urn corresponding to their actual positions and velocities at
0h00, 24th of September 1994. From Hairer, Lubich and
Wanner [18].
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Specifying the Asteroid’s Initial Conditions

The initial conditions I use for the outer planets are given in [18], with the
sun initially at the origin.

The asteroid’s initial conditions can be chosen arbitrarily, but to keep the
parameter space simple, we want to place an asteroid initially in line with
Jupiter, with the same inclination as Jupiter, and be able to specify its eccen-
tricity and orbital resonance with Jupiter, but with its orbit at either aphelion
or perihelion at the initial moment.

First we let rast = prjup, hast = hhjup, where rast and rjup are respectively
the vector positions of the asteroid and Jupiter with respect to the sun (ini-
tially at the origin), hast and hjup are the angular momentum per unit mass
of, respectively, the asteroid and Jupiter and p and h are scalars.

Fixing the rast parallel to rjup and hast parallel to hjup sets up the orbit of
the asteroid such that it is initially in line with and has the same inclination
as Jupiter’s orbit, eliminating many variables from consideration.

Also, hjup = rjup×vjup, where vjup is Jupiter’s vector velocity, and hast =
rast × vast, where vast is same for the asteroid.

Again, to simplify the proceedings and eliminate more variables from con-
sideration, we choose vast to have direction such that rast, vast and hast are
mutually orthogonal.

Given a desired mean motion resonance (n) and eccentricity (e), we can
determine the asteroid’s semi-major axis, given that Jupiter’s mean motion
is also known. In general, a = ( µ

(nnjup)2
)

1
3 = h2

µ(1−e2)
, where a is osculating

semi-major axis, njup is Jupiter’s (osculating) mean motion, n is the mean
motion ratio we desire (with nnjup being the desired mean motion of the
asteroid), h is the magnitude of the angular momentum per unit mass vector
and µ = G(m1 + m2), where G is Newton’s gravitational constant and m1
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and m2 are the masses of the bodies we are considering (m1 is typically the
Sun or central body, m2 is the other body), so for our purposes we have

h =

√
µa (1− e2)

|hjup|
.

Now with the relation hast = rast × vast = hhjup, and rast and vast are
of known directions but unknown magnitudes, we can take the modulus of
each side to get

|rast × vast| = h|hjup|
|rast||vast| = h|hjup| (as rast⊥vast)

|vast| =
h|hjup|
|rast|

=
h

p

|hjup|
|rjup|

A different equation relating the semi-major axis of a body to the distance
(R) from and speed (V ) relative to the body it is orbiting is

a =

(
2

R
− V 2

µ

)−1

Thus we have

a =

(
2

p|rjup|
− |vast|

2

µ

)−1

=

(
2

p|rjup|
− 1

µ

(
h

p

|hjup|
|rjup|

)2
)−1

=

(
2µp|rjup| − (h|hjup|)2

µ(p|rjup|)2

)−1

=
µ(p|rjup|)2

2µp|rjup| − (h|hjup|)2
,
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which leads to a quadratic equation in p with solutions

p+ =
a

|rjup|
+

1

µ|rjup|

√
(µa)2 − µa(h|hjup|)2)

and

p− =
a

|rjup|
− 1

µ|rjup|

√
(µa)2 − µa(h|hjup|)2).

The former equation p+ corresponds to placing the asteroid at aphelion, the
latter at perihelion.

Now that p is known (using either solution above) we can choose a magni-
tude for the vector vast, from

|vast| =
h

p

|hjup|
|rjup|

,

with a smaller value corresponding to the p+ solution and larger correspond-
ing to p−, as expected, as a body orbiting further away from its partner is
expected to travel more slowly than one travelling near.

Thus we have enough conditions to specify the initial location and velocity
of the asteroid, at least for the small number of cases we will sample.



APPENDIX D

Proof that Leapfrog Conserves Angular Momentum

Angular momentum of a body i is defined as hi = qi × pi. The angular
momentum of a system of N bodies is then hS =

∑N
i=1 hi. In a finite

mapping scheme, the angular momentum at time step n is denoted by a
further subscript.

The leapfrog algorithm is as follows for each body i:

qin+ 1
2

= qin +
τ

2

pin
mi

pin+1 = pin − τ
N∑
j=1
j 6=i

Gmimj(qin+ 1
2
− qjn+ 1

2
)

|qin+ 1
2
− qjn+ 1

2
|3

qin+1 = qin+ 1
2

+
τ

2

pin+1

mi

.

For notational simplicity, let Ai = τ
2mi

and Bij = − τGmimj
|qin+1

2
−qjn+1

2
|3 .

Now leapfrog is simply

qin+ 1
2

= qin + Aipin

pin+1 = pin +
N∑
j=1
j 6=i

Bij(qin+ 1
2
− qjn+ 1

2
)

qin+1 = qin+ 1
2

+ Aipin+1,

which can be expressed as
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pin+1 = pin +
N∑
j=1
j 6=i

Bij(qin + Aipin − qjn − Ajpjn)

pin+1 = qin + 2Aipin +
N∑
j=1
j 6=i

AiBij(qin + Aipin − qjn − Ajpjn).

The angular momentum of the system at step N + 1 is
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hSn+1 =
N∑
i=1

hin+1

=
N∑
i=1

qin+1 × pin+1

=
N∑
i=1

((qin + 2Aipin +
N∑
j=1
j 6=i

AiBij(qin+ 1
2
− qjn+ 1

2
))

× (pin +
N∑
j=1
j 6=i

Bij(qin+ 1
2
− qjn+ 1

2
)))

=
N∑
i=1

(qin × pin + 2Aipin × pin +
N∑
j=1
j 6=i

AiBij(qin+ 1
2
− qjn+ 1

2
)× pin

+ qin ×
N∑
j=1
j 6=i

Bij(qin+ 1
2
− qjn+ 1

2
) + 2Aipin ×

N∑
j=1
j 6=i

Bij(qin+ 1
2
− qjn+ 1

2
)

+
N∑
j=1
j 6=i

Bij(qin+ 1
2
− qjn+ 1

2
)×

N∑
j=1
j 6=i

Bij(qin+ 1
2
− qjn+ 1

2
))

=
N∑
i=1

(hin + qin+ 1
2
×

N∑
j=1
j 6=i

Bij(qin+ 1
2
− qjn+ 1

2
))

=
N∑
i=1

(hin +
N∑
j=1
j 6=i

Bij(qin+ 1
2
× qin+ 1

2
− qin+ 1

2
× qjn+ 1

2
))

=
N∑
i=1

(hin −
N∑
j=1
j 6=i

Bij qin+ 1
2
× qjn+ 1

2
).

However, when both summations are expanded, pairs of terms will appear
that look like

Bij qin+ 1
2
× qjn+ 1

2
+Bji qjn+ 1

2
× qin+ 1

2
,
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which cancel, leaving only

hSn+1 =
N∑
i=1

hin = hSn

as required.

While exact conservation of angular momentum is not proved here for the
fourth order algorithm, the argument proceeds along similar lines.



APPENDIX E

Figures Comparing Evolution of System With and
Without Long Term Drift

The following figures compare the evolution of several aspects of orbits
when the drift discussed in sections 3.1.2.1 and 3.3 is present and neu-
tralised, justifying that although truncation inevitably becomes significant
over particularly long time scales, the dynamics of the orbits do not ap-
pear significantly unreliable over 100 Myears if the drift is not neutralised.
Without a deeper understanding of the structure of the phase space for each
system, however, this cannot be more than a tentative statement. Further,
these runs were performed with a time step τ = 43.31572 days, so as per
the observations in section 3.4.4 the accuracy of the dynamics themselves
may not be trustworthy at all, even if the effect of the drift is negligible over
this time span.
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FIGURE 1. Comparison of: (A) and (B) eccentricity;
(C) and (D) mean motion ratio of asteroid with Jupiter
(blue/lower curve) and Saturn (green/upper curve); (E) and
(F) inclination; (G) and (H) angular momentum. The for-
mer of each pair is for the system with drift included, while
the initial momentum is neutralised in the latter. Both
runs started with the asteroid at perihelion, directly oppo-
site Jupiter’s IC, initial eccentricity e = 0.15 and inital mean
motion ratio with Jupiter being nast

njup
= 1.666666666666667.
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FIGURE 2. Continuation of previous figure.
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FIGURE 3. Comparison of: (A) and (B) eccentricity;
(C) and (D) mean motion ratio of asteroid with Jupiter
(blue/lower curve) and Saturn (green/upper curve); (E) and
(F) inclination; (G) and (H) angular momentum. The for-
mer of each pair is for the system with drift included, while
the initial momentum is neutralised in the latter. Both
runs started with the asteroid at perihelion, directly oppo-
site Jupiter’s IC, initial eccentricity e = 0.15 and inital mean
motion ratio with Jupiter being nast

njup
= 2.00.
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FIGURE 4. Continuation of previous figure.
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FIGURE 5. Comparison of: (A) and (B) eccentricity;
(C) and (D) mean motion ratio of asteroid with Jupiter
(blue/lower curve) and Saturn (green/upper curve); (E) and
(F) inclination; (G) and (H) angular momentum. The for-
mer of each pair is for the system with drift included, while
the initial momentum is neutralised in the latter. Both
runs started with the asteroid at perihelion, directly oppo-
site Jupiter’s IC, initial eccentricity e = 0.15 and inital mean
motion ratio with Jupiter being nast

njup
= 2.50.
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FIGURE 6. Continuation of previous figure.
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FIGURE 7. Comparison of: (A) and (B) eccentricity;
(C) and (D) mean motion ratio of asteroid with Jupiter
(blue/lower curve) and Saturn (green/upper curve); (E) and
(F) inclination; (G) and (H) angular momentum. The for-
mer of each pair is for the system with drift included, while
the initial momentum is neutralised in the latter. Both
runs started with the asteroid at perihelion, directly oppo-
site Jupiter’s IC, initial eccentricity e = 0.15 and inital mean
motion ratio with Jupiter being nast

njup
= 2.85720476458593.
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FIGURE 8. Continuation of previous figure.



E. COMPARISON FIGURES: DRIFT VS. NO DRIFT 75

0 2 4 6 8 10

x 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Eccentricity vs time

t (years)

e

(A)

0 2 4 6 8 10

x 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Eccentricity vs time

t (years)

e
(B)

0 2 4 6 8 10 12

x 10
7

2

3

4

5

6

7

8

Mean motion ratio vs time (blue: n
ast

/n
jup

, green: n
ast

/n
sat

t (years)

m
ea

n 
m

ot
io

n 
ra

tio

(C)

0 2 4 6 8 10 12

x 10
7

2

3

4

5

6

7

8

Mean motion ratio vs time (blue: n
ast

/n
jup

, green: n
ast

/n
sat

t (years)

m
ea

n 
m

ot
io

n 
ra

tio

(D)

FIGURE 9. Comparison of: (A) and (B) eccentricity;
(C) and (D) mean motion ratio of asteroid with Jupiter
(blue/lower curve) and Saturn (green/upper curve); (E) and
(F) inclination; (G) and (H) angular momentum. The for-
mer of each pair is for the system with drift included, while
the initial momentum is neutralised in the latter. Both
runs started with the asteroid at perihelion, directly oppo-
site Jupiter’s IC, initial eccentricity e = 0.15 and inital mean
motion ratio with Jupiter being nast

njup
= 3.00.
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FIGURE 10. Continuation of previous figure.
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FIGURE 11. Comparison of: (A) and (B) eccentricity;
(C) and (D) mean motion ratio of asteroid with Jupiter
(blue/lower curve) and Saturn (green/upper curve); (E) and
(F) inclination; (G) and (H) angular momentum. The for-
mer of each pair is for the system with drift included, while
the initial momentum is neutralised in the latter. Both
runs started with the asteroid at perihelion, directly oppo-
site Jupiter’s IC, initial eccentricity e = 0.15 and inital mean
motion ratio with Jupiter being nast

njup
= 3.82164505322.
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FIGURE 12. Continuation of previous figure.
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Appendix F with the MATLAB and Fortran codes on pages 80 to 134 are
available from the Applied Maths Honours coordinator as a separate volume
on request.



APPENDIX F

Codes

F1. MATLAB Codes

File: asteroid_integrate.m

1 clear;
2 format long
3

4 numplan = 4; % number of bodies
5 dim = 3; % number of spatial dimensions
6 dt = 1; % timestep size (days)
7 N = 365300;
8

9 storefrequency = 100; % frequency with which orbital
10 % data are written to buffer
11 dumpfrequency = 10; % length of buffer (data dumped each
12 % storefrequency*dumpfrequency steps)
13

14 [posscale speedscale] = generatescales(0.15,2);
15

16 initial_data;
17

18 testerror = 0;
19

20 opendat2;
21

22 method = 2;% 2 leapfrog, 3 fourth order
23

24 a=0;
25 b=0;
26 if method == 3
27 a = [1/(2*(2-2^(1/3)));(1-2^(1/3))/(2*(2-2^(1/3)));...
28 (1-2^(1/3))/(2*(2-2^(1/3)));1/(2*(2-2^(1/3)))];
29 b = [1/(2-2^(1/3));-(2^(1/3))/(2-2^(1/3));...
30 1/(2-2^(1/3));0];

80
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31 end
32

33 i_final=ceil(N/storefrequency)*storefrequency;
34

35 fprintf(fdetails,...
36 '%i\n%i\n%16.16e\n%i\n%i\n',...
37 '%16.16e\n%i\n%i\n%i\n%s\n',...
38 numplan,dim,dt,i_final,storefrequency,G,...
39 testerror,method,dumpfrequency,fpath);
40

41 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
42 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
43 for i = 1:numplan
44 fprintf(fm,'%16.16e\n',m(i));
45 end
46 breakrun=false;
47 for i=0:i_final-1
48 if mod(i,storefrequency)== 0 % store to buffer
49 pstore(:,:, mod(i,storefrequency*dumpfrequency)/...
50 storefrequency+1)=p;
51 qstore(:,:, mod(i,storefrequency*dumpfrequency)/...
52 storefrequency+1)=q;
53 if asteccentricity(p,q,m,G,dim) > 0.8 && ¬breakrun
54 breakrun = true;
55 fprintf('Eccentricity of asteroid > 0.8\n');
56 end
57 % fprintf('%i: stored to buffer\n',i);
58 end
59 if mod(i,storefrequency*dumpfrequency)==...
60 dumpfrequency*storefrequency-1
61 fprintf(phasecoord(1),'%+16.16e\n',qstore);
62 fprintf(phasecoord(2),'%+16.16e\n',pstore);
63 % fprintf('%i::f dumped buffer to disk\n',i);
64 % clear buffer
65 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
66 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
67 % fprintf('%i: cleared buffer\n',i);
68 if breakrun
69 i_final = i;
70 break
71 end
72 elseif i == i_final-1
73 fprintf(phasecoord(1),'%+16.16e\n',qstore);
74 fprintf(phasecoord(2),'%+16.16e\n',pstore);
75 % fprintf('%i:f dumped buffer to disk\n',i);
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76 % clear buffer
77 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
78 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
79 % fprintf('%i: cleared buffer\n',i);
80 % break
81 end
82

83 [p q] = integrateorbit3(p,q,m,G,method,dt,a,b);
84 end
85 if testerror ==1
86 % k1 = mod(i_final,dumpfrequency);
87 p = -p;
88 fprintf('testerror = true. Reversing flow.\n');
89 for i = 0:i_final+storefrequency
90 if mod(i,storefrequency)==0 && i6=0 % store to buffer
91 pstore(:,:,...
92 mod(i-storefrequency,storefrequency*dumpfrequency)/...
93 storefrequency+1)=p;
94 qstore(:,:,...
95 mod(i-storefrequency,storefrequency*dumpfrequency)...
96 /storefrequency+1)=q;
97 fprintf('%i: stored to buffer\n',...
98 i_final+storefrequency-i);
99 end

100 if mod(i,storefrequency*dumpfrequency)==0 && i6=0
101 fprintf(phasecoordr(1),'%+16.16e\n',qstore);
102 fprintf(phasecoordr(2),'%+16.16e\n',pstore);
103 fprintf('%i::r dumped buffer to disk\n',...
104 i_final+storefrequency-i);
105 % clear buffer
106 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
107 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
108 k1=0;
109 % fprintf('%i:- cleared buffer\n',i);
110 elseif i == i_final
111 fprintf(phasecoordr(1),'%+16.16e\n',qstore);
112 fprintf(phasecoordr(2),'%+16.16e\n',pstore);
113 fprintf('%i:r dumped buffer to disk\n',...
114 i_final+storefrequency-i);
115 % clear buffer
116 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
117 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
118 break
119 % fprintf('%i: cleared buffer\n',i);
120 end
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121

122 [p q] = integrateorbit3(p,q,m,G,method,dt,a,b);
123 end
124 end
125 fprintf('Done\n');
126 fclose('all');
127 clear;
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File: initial_data.m

1

2 G = 2.95912208286e-4;
3 m = [1.00000597682,...
4 1e-15,...
5 0.000954786104043,0.000285583733151];
6

7 vx = [0,...
8 0.761576392933587*speedscale,...
9 0.00565429,0.00168318...

10 ...,0.00354178,0.00288930,0.00276725
11 ];
12 vy = [0,...
13 -0.588733316817015*speedscale,...
14 -0.00412490,0.00483525...
15 ...,0.00137102,0.00114527,-0.00170702
16 ];
17 vz = [0,...
18 -0.270914155030523*speedscale,...
19 -0.00190589,0.00192462...
20 ...,0.00055029,0.00039677,-0.00136504
21 ];
22

23 qx = [0;...
24 -3.5023653*posscale;...
25 -3.5023653;9.0755314...
26 ...;8.3101420;11.4707666;-15.5387357
27 ];
28 qy = [0;...
29 -3.8169847*posscale;...
30 -3.8169847;-3.0458353...
31 ...;-16.2901086;-25.7294829;-25.2225594
32 ];
33 qz = [0;...
34 -1.5507963*posscale;...
35 -1.5507963;-1.6483708...
36 ...;-7.2521278;-10.8169456;-3.1902382
37 ];
38

39 % initial momenta
40 p(1:numplan,1:dim) = 0;
41 p(:,:) = [vx(:).*m(:),vy(:).*m(:),vz(:).*m(:)];
42
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43 % initial positions organised into a matrix
44 q(1:numplan,1:dim) = 0;
45 q(:,:) = [qx(:),qy(:),qz(:)];
46

47 clear vx vy vz qx qy qz
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File: integrateorbit3.m

1 function [p,q] = integrateorbit3(p,q,m,G,method,dt,a,b)
2 if method == 0 % Euler's method
3 dU = dpotential(q,G,m);
4 v = vel(p,m);
5 q = q + dt*v;
6 p = p - dt*dU;
7 elseif method == 1 % Symplectic Euler
8 v = vel(p,m);
9 q = q + dt*v;

10 dU = dpotential(q,G,m);
11 p = p - dt*dU;
12 elseif method == 2 % leapfrog
13 v = vel(p,m);
14 q_ihalf = q + dt/2*v;
15 dU = dpotential(q_ihalf,G,m);
16 p = p - dt*dU;
17 v = vel(p,m);
18 q = q_ihalf + dt/2*v;
19 elseif method == 3 % 4th order symplectic
20 for i = 1:4
21 if a(i) 6= 0
22 v = vel(p,m);
23 q = q + a(i)*dt*v;
24 end
25 if b(i) 6= 0
26 dU = dpotential(q,G,m);
27 p = p - b(i)*dt*dU;
28 end
29 end
30 end
31 end
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File: asteccentricity.m

1 function e = asteccentricity(p,q,m,G,dim)
2 r = q(2,:)-q(1,:); % relative position
3 nr = sqrt(sum(abs(r).^2)); % magnitude of r
4 v(1:dim) = 0;
5 v(:) = p(2,:)/m(2)-p(1,:)/m(1); % relative velocity
6 nv = sqrt(sum(abs(v).^2)); % magnitude of v
7 h = cross(r,v); % normal vector
8 nh = sqrt(sum(abs(h).^2)); % magnitude of normal
9

10 mu = G*(m(1)+m(2)); % reduced mass
11 a=1./(2./nr - nv.^2/mu);
12 e=sqrt(1-nh.^2./(mu*a)); % eccentricity
13 return
14 end

File: vel.m

1 function v = vel(p,m)
2 v = p;
3 for i = 1:size(p,2)
4 v(:,i) = v(:,i)./m(:);
5 end
6 end
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File: dpotential.m

1 function DU = dpotential(q,G,m)
2 numplan = size(q,1);
3 dim = size(q,2);
4 pow = 3/2;
5 dU(1:numplan,1:dim,1:numplan) = 0;
6 diff(1:numplan,1:dim,1:numplan) = 0;
7 denom(1:numplan,1:numplan) = 0;
8 for l = 1:numplan
9 for j = 1:numplan

10 if l == j
11 diff(l,:,j) = 0;
12 denom(l,j) = 0;
13 dU(l,:,j) = 0;
14 else
15 diff(l,:,j) = -(q(l,:)-q(j,:));
16 denom(l,j) = sum(diff(l,:,j).^2,2);
17 dU(l,:,j) =...
18 -G*m(l)*m(j)*diff(l,:,j)/denom(l,j)^pow;
19 end
20 end
21 end
22 DU = sum(dU,3);
23 return
24 end
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File: generatescales.m

1 function [p s] = generatescales(e, meanmotratio)
2 % given a desired average eccentricity and average mean motion ratio with
3 % jupiter (given that the asteroid starts within jupiter's orbit), this
4 % determines an appropriate pair of scale factors for the asteroid's
5 % initial conditions (for simplicity having the asteroid start directly on
6 % the line between jupiter and the sun).
7

8 G = 2.95912208286e-4; % gravitational constant
9

10 m = 1.00000597682; % mass of sun
11

12 mu = G*(m+1e-15); % 1e-15 is the mass of the asteroid
13

14 % jupiter's initial state
15 vjupi = [0.00565429, -0.00412490, -0.00190589];
16 qjupi = [-3.5023653,-3.8169847,-1.5507963];
17 hjupi = cross(qjupi,vjupi);
18

19 rji = sqrt(sum(qjupi.^2));
20 vji = sqrt(sum(vjupi.^2));
21 hji = sqrt(sum(hjupi.^2));
22

23 rj = rji;
24 vj = vji;
25 hj = hji;
26

27 vjup = vj*vjupi/vji;
28 qjup = rj*qjupi/rji;
29 hjup = cross(qjup,vjup);
30

31 va1 = cross(hjup,qjup);
32 vmag = sqrt(sum(va1.^2));
33 vunit = va1/vmag;
34

35 averagemeanmotjup = 1.450072902967737e-03;
36

37 averagemeanmotast = averagemeanmotjup*meanmotratio;
38

39 % semi-major axis of asteroid
40 a = nthroot(mu/averagemeanmotast^2,3);
41

42 hsquared = mu*a*(1-e^2)/hj^2;
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43 h = sqrt(hsquared);
44

45 % pplus = a/rj + sqrt((mu*a)^2 - mu*a*hsquared*hj^2)/(mu*rj);
46 % splus = (h/pplus)*(hj/rj);
47 % p = pplus;
48 % s = splus;
49

50 pminus = a/rj - sqrt((mu*a)^2 - mu*a*hsquared*hj^2)/(mu*rj);
51 sminus = (h/pminus)*(hj/rj);
52 p = pminus;
53 s = sminus;
54

55 end
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File: asteroid_resume_run.m

1 clear;
2

3 resumedat2
4

5 % read essential details from file
6 numplan = fscanf(fdetails,'%i',1);
7 dim = fscanf(fdetails,'%i',1);
8 dt = fscanf(fdetails,'%f',1);
9 N = fscanf(fdetails,'%f',1);

10 storefrequency = fscanf(fdetails,'%f',1);
11 G = fscanf(fdetails,'%f',1);
12 testerror=fscanf(fdetails,'%i',1);
13 method=fscanf(fdetails,'%i',1);
14 dumpfrequency=fscanf(fdetails,'%i',1);
15

16 fclose(fdetails);
17

18 % read masses from file
19 m(1:numplan) = 0;
20 for j = 1:numplan
21 m(j) = fscanf(fm,'%f',1);
22 end
23

24 fclose(fm);
25

26 % get to the last p and q properly recorded to file
27 q(1:numplan,1:dim) = 0;
28 p(1:numplan,1:dim) = 0;
29 qtemp(1:numplan,1:dim) = 0;
30 ptemp(1:numplan,1:dim) = 0;
31 k = 0;
32 eof=false;
33 while ¬feof(phasecoord(1))
34 qtemp = fscanf(phasecoord(1),'%f',[numplan,dim]);
35 ptemp = fscanf(phasecoord(2),'%f',[numplan,dim]);
36

37 if size(ptemp,1)6=numplan || size(ptemp,2)6=dim
38 fprintf('Last output was incompletely written in p - ');
39 position = ftell(phasecoord(1))-numplan*dim*25;
40 break
41 elseif size(qtemp,1)6=numplan || size(qtemp,2)6=dim
42 fprintf('Last output was incompletely written in q - ');
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43 position = ftell(phasecoord(2))-numplan*dim*25;
44 break
45 elseif (sum(sum(ones(numplan,dim)-(qtemp(:,:)==0)))==0 &&...
46 sum(sum(ones(numplan,dim)-(ptemp(:,:)==0)))==0)
47 fprintf('Reached end of output - ');
48 position = ftell(phasecoord(1));
49 break
50 elseif isempty(qtemp) || isempty(ptemp)
51 eof=true;
52 fprintf('Reached eof - ');
53 position = ftell(phasecoord(1));
54 break
55 else
56 q = qtemp;
57 p = ptemp;
58 end
59 k=k+1;
60 end
61 % k = number of recorded timesteps
62 % numplan*dim*k = number of lines recorded in p,q
63 % numplan*dim*k*25 = number of characters recorded in p,q
64 if eof == true
65 fseek(phasecoord(1),0,'eof');
66 fseek(phasecoord(2),0,'eof');
67 fprintf('placing marker at eof\n');
68 else
69 fprintf('placing marker at end of last completed output %i\n',...
70 numplan*dim*k*25);
71 fseek(phasecoord(1),numplan*dim*k*25,'bof');
72 fseek(phasecoord(2),numplan*dim*k*25,'bof');
73 end
74

75 a=0;
76 b=0;
77 if method == 3
78 a = [1/(2*(2-2^(1/3)));(1-2^(1/3))/(2*(2-2^(1/3)));...
79 (1-2^(1/3))/(2*(2-2^(1/3)));1/(2*(2-2^(1/3)))];
80 b = [1/(2-2^(1/3));-(2^(1/3))/(2-2^(1/3));...
81 1/(2-2^(1/3));0];
82 end
83

84 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
85 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
86

87 k1=mod(k,dumpfrequency);
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88 i_final = N;
89

90 if k*storefrequency < i_final
91

92 % this block progresses us to the next timestep that
93 % would be recorded and avoids the calculation going
94 % out of phase with an uninterrupted simulation from
95 % the original ICs.
96 for i = 1:storefrequency
97 [p q] = integrateorbit3(p,q,m,G,method,dt,a,b);
98 end
99

100 fprintf('Resuming\n');
101 breakrun=false;
102 for i=k*storefrequency:i_final-1
103 if mod(i,storefrequency)== 0 % store current data to buffer
104 pstore(:,:,mod(i,storefrequency*dumpfrequency)/...
105 storefrequency+1-k1)=p;
106 qstore(:,:,mod(i,storefrequency*dumpfrequency)/...
107 storefrequency+1-k1)=q;
108 if asteccentricity(p,q,m,G,dim) > 0.8
109 breakrun = true;
110 fprintf('Eccentricity of asteroid > 0.8');
111 end
112 end
113 if mod(i,storefrequency*dumpfrequency)==...
114 dumpfrequency*storefrequency-1
115 for h = 1:dumpfrequency-k1
116 for j = 1:dim
117 for l = 1:numplan
118 fprintf(phasecoord(1),'%+16.16e\n',...
119 qstore(l,j,h));
120 fprintf(phasecoord(2),'%+16.16e\n',...
121 pstore(l,j,h));
122 end
123 end
124 end
125 % clear buffer
126 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
127 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
128 if breakrun
129 i_final = i;
130 break
131 end
132 k1=0;
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133 elseif i == i_final-1
134 for h = 1:dumpfrequency-k1
135 for j = 1:dim
136 for l = 1:numplan
137 fprintf(phasecoord(1),'%+16.16e\n',...
138 qstore(l,j,h));
139 fprintf(phasecoord(2),'%+16.16e\n',...
140 pstore(l,j,h));
141 end
142 end
143 end
144 %fprintf('%i:f dumped buffer to disk\n',i);
145 % clear buffer
146 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
147 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
148 % break
149 end
150

151 [p q] = integrateorbit3(p,q,m,G,method,dt,a,b);
152 end
153 if testerror == 1
154 p = -p;
155 fprintf('testerror = true. Reversing flow.\n');
156 for i = 0:i_final+storefrequency
157 if mod(i,storefrequency)==0 && i6=0
158 pstore(:,:,...
159 mod(i-storefrequency,storefrequency*dumpfrequency)/...
160 storefrequency+1)=p;
161 qstore(:,:,...
162 mod(i-storefrequency,storefrequency*dumpfrequency)/...
163 storefrequency+1)=q;
164 end
165 if mod(i,storefrequency*dumpfrequency)==0 && i6=0
166 fprintf(phasecoordr(1),'%+16.16e\n',qstore);
167 fprintf(phasecoordr(2),'%+16.16e\n',pstore);
168 % clear buffer
169 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
170 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
171 k1=0;
172 elseif i == i_final
173 fprintf(phasecoordr(1),'%+16.16e\n',qstore);
174 fprintf(phasecoordr(2),'%+16.16e\n',pstore);
175 fprintf('%i:r dumped buffer to disk\n',...
176 i_final+storefrequency-i);
177 % clear buffer
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178 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
179 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
180 break
181 % fprintf('%i: cleared buffer\n',i);
182 end
183

184 [p q] = integrateorbit3(p,q,m,G,method,dt,a,b);
185 end
186 end
187 else
188 fprintf('No need to resume forward run\n');
189 pforwardfinal = p;
190 qforwardfinal = q;
191 if testerror == 1
192 fprintf('testerror = 1. Testing to possibly resume reverse run.\n');
193 % get to the last p and q properly recorded to file
194 q(1:numplan,1:dim) = 0;
195 p(1:numplan,1:dim) = 0;
196 qtemp(1:numplan,1:dim) = 0;
197 ptemp(1:numplan,1:dim) = 0;
198 k = 0;
199 eof=false;
200 while ¬feof(phasecoord(1))
201 qtemp = fscanf(phasecoordr(1),'%f',[numplan,dim]);
202 ptemp = fscanf(phasecoordr(2),'%f',[numplan,dim]);
203

204 if size(ptemp,1)6=numplan || size(ptemp,2)6=dim
205 fprintf('Last output was incompletely written in p - ');
206 position = ftell(phasecoordr(1))-numplan*dim*25;
207 break
208 elseif size(qtemp,1)6=numplan || size(qtemp,2)6=dim
209 fprintf('Last output was incompletely written in q - ');
210 position = ftell(phasecoordr(2))-numplan*dim*25;
211 break
212 elseif (sum(sum(ones(numplan,dim)-...
213 (qtemp(numplan,dim)==0)))==0 &&...
214 sum(sum(ones(numplan,dim)-...
215 (ptemp(numplan,dim)==0)))==0
216 fprintf('Reached end of output - ');
217 position = ftell(phasecoordr(1));
218 break
219 elseif isempty(qtemp) || isempty(ptemp)
220 eof=true;
221 fprintf('Reached eof - ');
222 position = ftell(phasecoordr(1));
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223 break
224 else
225 q = qtemp;
226 p = ptemp;
227 end
228 k=k+1;
229 end
230 % k = number of recorded timesteps
231 % numplan*dim*k = number of lines recorded in p,q
232 % numplan*dim*k*25 = number of characters recorded in p,q
233 if eof == true
234 fseek(phasecoordr(1),0,'eof');
235 fseek(phasecoordr(2),0,'eof');
236 fprintf('placing marker at eof\n');
237 else
238 fprintf(...
239 'placing marker at end of last completed output %i\n',...
240 numplan*dim*k*25);
241 fseek(phasecoordr(1),numplan*dim*k*25,'bof');
242 fseek(phasecoordr(2),numplan*dim*k*25,'bof');
243 end
244

245 a=0;
246 b=0;
247 if method == 3
248 a = [1/(2*(2-2^(1/3)));(1-2^(1/3))/(2*(2-2^(1/3)));...
249 (1-2^(1/3))/(2*(2-2^(1/3)));1/(2*(2-2^(1/3)))];
250 b = [1/(2-2^(1/3));-(2^(1/3))/(2-2^(1/3));...
251 1/(2-2^(1/3));0];
252 end
253

254 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
255 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
256

257 k1=mod(k,dumpfrequency);
258 i_final = N;
259

260 if k*storefrequency < i_final
261 fprintf('Resuming reverse run\n');
262 breakrun=false;
263 firstwriteiteration=true;
264

265 if k == 0
266 for i = 1:storefrequency
267 [pforwardfinal qforwardfinal] =...
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268 integrateorbit3(pforwardfinal,qforwardfinal,...
269 m,G,method,dt,a,b);
270 end
271 p=-pforwardfinal;
272 q=qforwardfinal;
273 else
274 % this block progresses us to the next
275 % timestep that would be recorded and
276 % avoids the calculation going out of
277 % phase with an uninterrupted simulation
278 % from the original ICs.
279 for i = 1:storefrequency
280 [p q] =...
281 integrateorbit3(p,q,m,G,method,dt,a,b);
282 end
283 end
284 for i = k*storefrequency:i_final+storefrequency
285 if (mod(i,storefrequency)==0 && i6=0)
286 pstore(:,:,mod(i-storefrequency,...
287 storefrequency*dumpfrequency)/...
288 storefrequency+1)=p;
289 qstore(:,:,mod(i-storefrequency,...
290 storefrequency*dumpfrequency)/...
291 storefrequency+1)=q;
292 end
293 if firstwriteiteration && mod(i,storefrequency*...
294 dumpfrequency)==0
295 for h = mod(i-storefrequency,...
296 storefrequency*dumpfrequency)/...
297 storefrequency:dumpfrequency
298 for j = 1:dim
299 for l = 1:numplan
300 fprintf(phasecoordr(1),'%+16.16e\n',...
301 qstore(l,j,h));
302 fprintf(phasecoordr(2),'%+16.16e\n',...
303 pstore(l,j,h));
304 end
305 end
306 end
307 fprintf('%i::r dumped buffer to disk\n',...
308 i_final+storefrequency-i);
309 % clear buffer
310 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
311 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
312 k1=0;
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313 firstwriteiteration=false;
314 elseif (mod(i,storefrequency*dumpfrequency)==0 && i6=0)
315 for h = 1:dumpfrequency
316 for j = 1:dim
317 for l = 1:numplan
318 fprintf(phasecoordr(1),'%+16.16e\n',...
319 qstore(l,j,h));
320 fprintf(phasecoordr(2),'%+16.16e\n',...
321 pstore(l,j,h));
322 end
323 end
324 end
325 fprintf('%i::r dumped buffer to disk\n',...
326 i_final+storefrequency-i);
327 % clear buffer
328 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
329 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
330 k1=0;
331 elseif i == i_final
332 for h = 1:dumpfrequency-k1
333 for j = 1:dim
334 for l = 1:numplan
335 fprintf(phasecoordr(1),'%+16.16e\n',...
336 qstore(l,j,h));
337 fprintf(phasecoordr(2),'%+16.16e\n',...
338 pstore(l,j,h));
339 end
340 end
341 end
342 fprintf('%i:r dumped buffer to disk\n',...
343 i_final+storefrequency-i);
344 % clear buffer
345 pstore(1:numplan,1:dim,1:dumpfrequency)=0;
346 qstore(1:numplan,1:dim,1:dumpfrequency)=0;
347 break
348 end
349

350 [p q] = integrateorbit3(p,q,m,G,method,dt,a,b);
351 end
352 else
353 fprintf('No need to resume reverse run\n');
354 end
355 end
356 end
357 fprintf('Done\n');
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358 fclose('all');
359 % clear;



100 F. CODES

File: asteroid_compare_runs.m

1 clear;
2

3 readdat2
4 readdatcomp
5 [numplan(1) dim(1) dt(1) N(1) storefrequency(1)...
6 G(1) err(1) method(1) dumpfrequency(1) Nmax(1)...
7 m(1,:) t(1,:)] = getdetails(fm,fdetails);
8 [numplan(2) dim(2) dt(2) N(2) storefrequency(2)...
9 G(2) err(2) method(2) dumpfrequency(2) Nmax(2)...

10 m(2,:) t(2,:)] = getdetails(fm2,fdetails2);
11

12 if dim(1) 6= dim(2)
13 error('spatial dimensions unequal');
14 end
15 dim = dim(1);
16

17 if t(1,Nmax(1)) 6= t(2,Nmax(2))
18 error('runs are for different amounts of time');
19 else
20 equalsteps = false;
21 if Nmax(1) == Nmax(2)
22 dt = dt(1);
23 N = N(1);
24 storefrequency = storefrequency(1);
25 equalsteps = 2;
26 end
27 end
28

29 if G(1) 6= G(2)
30 error('G does not match between runs');
31 end
32 G = G(1);
33 if err(1) 6= err(2)
34 fprintf('one run reverses, other does not');
35 err = 1;
36 else
37 err = err(1);
38 end
39

40

41 [p q h hsys T U a e inclination trueanom argperi...
42 ascnode meanmot com vcom] = extract(phasecoord,...



F1. MATLAB CODES 101

43 numplan(1), dim, dt(1), G, Nmax(1), m(1,:));
44 if equalsteps
45 [p2 q2 h2 hsys2 T2 U2 a2 e2 inclination2...
46 trueanom2 argperi2 ascnode2 meanmot2 com2 vcom2] =...
47 extract(phasecoord2, numplan(2), dim, dt(1), G, Nmax,...
48 m(2,:));
49 else
50 [p2 q2 h2 hsys2 T2 U2 a2 e2 inclination2...
51 trueanom2 argperi2 ascnode2 meanmot2 com2 vcom2] =...
52 extract(phasecoord2, numplan(2), dim, dt(2), G, Nmax(2),...
53 m(2,:));
54 end
55

56 if err == 2
57 [pr qr hr hsysr Tr Ur ar er inclinationr trueanomr...
58 argperir ascnoder meanmotr comr vcomr] =...
59 extract(phasecoordr, numplan(1), dim, dt(1), G,...
60 Nmax(1), m(1,:));
61 if equalsteps
62 [pr2 qr2 hr2 hsysr2 Tr2 Ur2 ar2 er2 inclinationr2...
63 trueanomr2 argperir2 ascnoder2 meanmotr2 comr2...
64 vcomr2] = extract(phasecoordr2, numplan(2),...
65 dim, dt, G, Nmax, m(2,:));
66 else
67 [pr2 qr2 hr2 hsysr2 Tr2 Ur2 ar2 er2 inclinationr2...
68 trueanomr2 argperir2 ascnoder2 meanmotr2...
69 comr2 vcomr2] = extract(phasecoordr2, numplan(2),...
70 dim, dt(2), G, Nmax(2), m(2,:));
71 end
72 end
73

74 figure(1)
75 plot(t,e(2,:)-e2(2,:),t,e(3,:)-e2(3,:))
76 if err == 2
77 hold on
78 plot(t,er(2,Nmax:-1:1)-er2(2,Nmax:-1:1),'r',t,...
79 er(3,Nmax:-1:1)-er2(3,Nmax:-1:1),'m')
80 end
81 xlabel('t (years)');
82 ylabel('e1 - e2');
83 figure(2)
84 plot(t,a(2,:)-a2(2,:),t,a(3,:)-a2(3,:))
85 if err == 2
86 hold on
87 plot(t,ar(2,Nmax:-1:1)-ar2(2,Nmax:-1:1),'r',...
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88 t,ar(3,Nmax:-1:1)-ar2(3,Nmax:-1:1),'m')
89 end
90 xlabel('t (years)');
91 ylabel('a1 - a2');
92 figure(3)
93 plot(t,meanmot(2,:)./meanmot(3,:)-...
94 meanmot2(2,:)./meanmot2(3,:))
95 if err == 2
96 hold on
97 plot(t,meanmot(2,Nmax:-1:1)./meanmotr(3,Nmax:-1:1)-...
98 meanmotr2(2,Nmax:-1:1)./meanmotr2(3,Nmax:-1:1),'r')
99 end

100 xlabel('t (years)');
101 ylabel('mean motion: asteroid1/jupiter1 - asteroid2/jupiter2');
102 figure(4)
103 plot(t,T+U-T2-U2)
104 if err == 2
105 hold on
106 plot(t,Tr(Nmax:-1:1)+Ur(Nmax:-1:1)-...
107 (Tr2(Nmax:-1:1)+Ur2(Nmax:-1:1)),'r')
108 end
109 xlabel('t (years)');
110 ylabel('Hamiltonian1 - Hamiltonian2');
111 figure(5)
112 plot(t,sqrt(sum((hsys).^2,1))-sqrt(sum((hsys2).^2,1)))
113 if err == 2
114 hold on
115 plot(t,sqrt(sum((hsysr(:,Nmax:-1:1)).^2,1))...
116 -sqrt(sum((hsysr2(:,Nmax:-1:1)).^2,1)),'r')
117 end
118 xlabel('t (years)');
119 ylabel('Total angular momentum1 - total angular momentum2');
120 figure(6)
121 qast(:,:) = q(2,:,:);
122 qast = qast - com;
123 qast2(:,:) = q2(2,:,:);
124 qast2 = qast2 - com2;
125 plot3(qast(1,:),qast(2,:),qast(3,:),'.',...
126 qast2(1,:),qast2(2,:),qast2(3,:),'.')
127 axis equal
128 grid on
129 %axis square
130 if err == 2
131 qastr(:,:) = qr(2,:,:);
132 qastr = qastr - comr;
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133 hold on
134 plot3(qast(1,1),qast(2,1),qast(3,1),'ro',...
135 qast2(1,1),qast2(2,1),qast2(3,1),'go')
136 plot3(qastr(1,Nmax),qastr(2,Nmax),qastr(3,Nmax),'r*',...
137 qastr(1,Nmax),qastr(2,Nmax),qastr(3,Nmax),'g*')
138 end
139 if err == 2
140 fprintf('q_ast_start - q_ast_finish = %16.16f\n',...
141 sqrt(sum(q(2,:,1).^2-qr(2,:,Nmax).^2,2)));
142 fprintf('q_jup_start - q_jup_finish = %16.16f\n',...
143 sqrt(sum(q(3,:,1).^2-qr(3,:,Nmax).^2,2)));
144 fprintf('q_ast_start2 - q_ast_finish2 = %16.16f\n',...
145 sqrt(sum(q2(2,:,1).^2-qr2(2,:,Nmax).^2,2)));
146 fprintf('q_jup_start2 - q_jup_finish2 = %16.16f\n',...
147 sqrt(sum(q2(3,:,1).^2-qr2(3,:,Nmax).^2,2)));
148 end
149 fclose('all');
150 % clear;
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File: asteroid_plot.m

1 clear;
2

3 readdat2
4 [numplan dim dt N storefrequency G err method...
5 dumpfrequency Nmax m t] = getdetails(fm,fdetails);
6 [p q h hsys T U a e inclination trueanom...
7 argperi ascnode meanmot com vcom endi] =...
8 extract(phasecoord, numplan, dim, dt, G, Nmax, m);
9

10 if endi 6= Nmax
11 fprintf('run terminated at step %i, not step %i\n',...
12 endi*storefrequency,Nmax*storefrequency)
13 if err == 2
14 err = 0;
15 end
16 else
17 if err == 2
18 [pr(:,:,Nmax:-1:1) qr(:,:,Nmax:-1:1)...
19 hr(:,:,Nmax:-1:1) hsysr(:,Nmax:-1:1)...
20 Tr(Nmax:-1:1) Ur(Nmax:-1:1) ar(:,Nmax:-1:1)...
21 er(:,Nmax:-1:1) inclinationr(:,Nmax:-1:1)...
22 trueanomr(:,Nmax:-1:1) argperir(:,Nmax:-1:1)...
23 ascnoder(:,Nmax:-1:1) meanmotr(:,Nmax:-1:1)...
24 comr(:,Nmax:-1:1) vcomr(:,Nmax:-1:1) endi] =...
25 extract(phasecoordr, numplan, dim, dt, G, Nmax, m);
26 end
27

28 if endi6= Nmax
29 fprintf(...
30 'reverse run terminated at step %i, not step %i\n',...
31 endi*storefrequency,Nmax*storefrequency)
32 end
33 end
34

35 figure(1)
36 plot(t,e(2,:),t,e(3,:))
37 if err == 2
38 hold on
39 plot(t,er(2,:),'r',t,er(3,:),'m')
40 end
41 axis([0 max(t) 0 1])
42 xlabel('t (years)');
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43 ylabel('e');
44 figure(2)
45 plot(t,a(2,:),t,a(3,:))
46 if err == 2
47 hold on
48 plot(t,ar(2,:),'r',t,ar(3,:),'m')
49 end
50 xlabel('t (years)');
51 ylabel('a (AU)');
52 axis([0 max(t) 0 6])
53 figure(3)
54 plot(t,meanmot(2,:)./meanmot(3,:),...
55 t,meanmot(2,:)./meanmot(4,:))
56 if err == 2
57 hold on
58 plot(t,meanmotr(2,:)./meanmotr(3,:),'r',...
59 t,meanmotr(2,:)./meanmotr(4,:),'m')
60 end
61 xlabel('t (years)');
62 ylabel('mean motion: asteroid/jupiter');
63 figure(4)
64 plot(t,-(inclination(2,:)-...
65 mean(inclination(3,:),2))*180/pi)
66 if err == 2
67 hold on
68 plot(t,(inclinationr(2,:)-...
69 mean(inclinationr(3,:),2))*180/pi,'r')
70 end
71 xlabel('t (years)');
72 ylabel('inclination (degrees) relative to jupiter mean');
73 figure(5)
74 plot(t,T+U)
75 if err == 2
76 hold on
77 plot(t,Tr+Ur,'r')
78 end
79 xlabel('t (years)');
80 ylabel('Hamiltonian');
81 figure(6)
82 plot(t,sqrt(sum((hsys).^2,1)))
83 if err == 2
84 hold on
85 plot(t,sqrt(sum((hsysr).^2,1)),'r')
86 end
87 xlabel('t (years)');
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88 ylabel('Total angular momentum');
89 figure(7)
90 qast(:,:) = q(2,:,:);
91 qast = qast - com;
92 qjup(:,:) = q(3,:,:);
93 qjup = qjup - com;
94 qsun(:,:) = q(1,:,:);
95 qsun = qsun - com;
96 plot3(qast(1,:),qast(2,:),qast(3,:),'.',...
97 qjup(1,:),qjup(2,:),qjup(3,:),'.',...
98 qsun(1,:),qsun(2,:),qsun(3,:),'.')
99 axis equal

100 grid on
101 %axis square
102 if err == 2
103 qastr(:,:) = qr(2,:,:);
104 qastr = qastr - comr;
105 hold on
106 plot3(qast(1,1),qast(2,1),qast(3,1),'ro')
107 plot3(qastr(1,1),qastr(2,1),qastr(3,1),'r*')
108 end
109 if err == 2
110 fprintf('q_ast_start - q_ast_finish = %16.16f\n',...
111 abs(sqrt(sum(q(2,:,1).^2-qr(2,:,1).^2,2))));
112 fprintf('q_jup_start - q_jup_finish = %16.16f\n',...
113 abs(sqrt(sum(q(3,:,1).^2-qr(3,:,1).^2,2))));
114 end
115 fclose('all');
116 % clear;
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File: getdetails.m

1 function [numplan dim dt N storefrequency G...
2 err method dumpfrequency Nmax m t] =...
3 getdetails(fm,fdetails)
4

5 numplan = fscanf(fdetails,'%i',1);
6 dim = fscanf(fdetails,'%i',1);
7 dt = fscanf(fdetails,'%f',1);
8 N = fscanf(fdetails,'%f',1);
9 storefrequency = fscanf(fdetails,'%f',1);

10 G = fscanf(fdetails,'%f',1);
11 err = 1+fscanf(fdetails,'%i',1);
12 method = fscanf(fdetails,'%i',1);
13 dumpfrequency = fscanf(fdetails,'%i',1);
14 Nmax = floor(N/storefrequency);
15 t = (0:dt*storefrequency:...
16 (Nmax-1)*dt*storefrequency)/365.25;
17 m(1:numplan) = 0;
18

19 for j = 1:numplan
20 m(j) = fscanf(fm,'%f',1);
21 end

File: extract.m

1 function [p q h hsys T U a e inclination trueanom...
2 argperi ascnode meanmot com vcom endi] =...
3 extract(phasecoord, numplan, dim, dt, G, Nmax, m)
4

5

6 q(1:numplan,1:dim,1:Nmax) = 0;
7 p(1:numplan,1:dim,1:Nmax) = 0;
8 orbitalels(1:numplan,1:6,1:Nmax)=0;
9 e(1:numplan,1:Nmax) = 0;

10 a(1:numplan,1:Nmax) = 0;
11 inclination(1:numplan,1:Nmax) = 0;
12 ascnode(1:numplan,1:Nmax) = 0;
13 argperi(1:numplan,1:Nmax) = 0;
14 trueanom(1:numplan,1:Nmax) = 0;
15 T(1:Nmax)=0;
16 U(1:Nmax)=0;
17
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18 qempty = false;
19 pempty = false;
20

21 for i = 1:Nmax
22 if pempty || qempty
23 if i == 2
24 break
25 end
26 for l = i-1:Nmax
27 q(:,:,l) = q(:,:,i-2);
28 p(:,:,l) = p(:,:,i-2);
29 T(l) = T(i-2);
30 U(l) = U(i-2);
31 orbitalels(:,:,l) = orbitalels(:,:,i-2);
32 end
33 break
34 end
35 for k = 1:dim
36 for j = 1:numplan
37 if ¬qempty
38 qjkitemp = fscanf(phasecoord(1),'%f',1);
39 end
40 if ¬isempty(qjkitemp)
41 q(j,k,i) = qjkitemp;
42 else
43 qempty = true;
44 end
45 if ¬pempty
46 pjkitemp = fscanf(phasecoord(2),'%f',1);
47 end
48 if ¬isempty(pjkitemp)
49 p(j,k,i) = pjkitemp;
50 else
51 pempty = true;
52 end
53 end
54 end
55

56 T(i) = sum((sum(p(:,:,i).^2,2))./m(:)/2);
57 U(i) = potential(G,m,q(:,:,i));
58 orbitalels(:,:,i)=orbitalels3(p(:,:,i),q(:,:,i),m,G,numplan,dim);
59 end
60

61 if i == Nmax
62 endi = Nmax;
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63 else
64 endi = i-2;
65 end
66

67 e(:,:) = orbitalels(:,1,:);
68 a(:,:) = orbitalels(:,2,:);
69 inclination(:,:) = orbitalels(:,3,:);
70 trueanom(:,:) = orbitalels(:,4,:);
71 argperi(:,:) = orbitalels(:,5,:);
72 ascnode(:,:) = orbitalels(:,6,:);
73

74 meanmot(1:numplan,1:Nmax) = 0;
75 for i = 1:numplan
76 meanmot(i,:) = sqrt(G.*(m(1)+m(i))./a(i,:).^3);
77 end
78

79 % centre of mass
80 if numplan≥4
81 com(1:dim,1:Nmax) = (q(1,:,:)*m(1)+...
82 q(2,:,:)*m(2)+q(3,:,:)*m(3)+...
83 q(4,:,:)*m(4))/sum(m);
84 else
85 com(1:dim,1:Nmax) = (q(1,:,:)*m(1)+...
86 q(2,:,:)*m(2)+q(3,:,:)*m(3))/sum(m);
87 end
88

89 % velocity of ventre of mass
90 vcom(1:dim,1:Nmax) = 0;
91 for i = 1:Nmax-1
92 vcom(1:3,i) = (com(:,i+1)-com(:,i))/dt;
93 end
94 vcom(:,Nmax) = vcom(:,Nmax-1);
95

96 % positions and velocities relative to com
97 qrelcom1(1:dim,1:Nmax) = 0;
98 qrelcom2(1:dim,1:Nmax) = 0;
99 qrelcom3(1:dim,1:Nmax) = 0;

100 if numplan≥4
101 qrelcom4(1:dim,1:Nmax) = 0;
102 end
103 vrelcom1(1:dim,1:Nmax) = 0;
104 vrelcom2(1:dim,1:Nmax) = 0;
105 vrelcom3(1:dim,1:Nmax) = 0;
106 if numplan≥4
107 vrelcom4(1:dim,1:Nmax) = 0;
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108 end
109 for j = 1:dim
110 for k = 1:Nmax
111 qrelcom1(j,k) = q(1,j,k) - com(j,k);
112 qrelcom2(j,k) = q(2,j,k) - com(j,k);
113 qrelcom3(j,k) = q(3,j,k) - com(j,k);
114 if numplan≥4
115 qrelcom4(j,k) = q(4,j,k) - com(j,k);
116 end
117 vrelcom1(j,k) = p(1,j,k)./m(1) - vcom(j,k);
118 vrelcom2(j,k) = p(2,j,k)./m(2) - vcom(j,k);
119 vrelcom3(j,k) = p(3,j,k)./m(3) - vcom(j,k);
120 if numplan≥4
121 vrelcom4(j,k) = p(4,j,k)./m(4) - vcom(j,k);
122 end
123 end
124 end
125

126 % angular momentum of each body
127 h(1,:,:) = m(1)*cross(qrelcom1,vrelcom1);
128 h(2,:,:) = m(2)*cross(qrelcom2,vrelcom2);
129 h(3,:,:) = m(3)*cross(qrelcom3,vrelcom3);
130 if numplan≥4
131 h(4,:,:) = m(4)*cross(qrelcom4,vrelcom4);
132 end
133

134 hsys = squeeze(sum(h,1));
135 end



F1. MATLAB CODES 111

File: orbitalels3.m

1 function orbitalels = orbitalels3(p,q,m,G,numplan,dim)
2 orbitalels(1:numplan,1:6)=0;
3 for i = 1:numplan
4 r(1:dim)=q(i,:)-q(1,:); % relative position
5 nr=sqrt(sum(abs(r).^2)); % magnitude of r
6 v(1:dim)=0;
7 v(:)=p(i,:)/m(i)-p(1,:)/m(1); % relative velocity
8 nv=sqrt(sum(abs(v).^2)); % magnitude of v
9 h(1:dim)= cross(r,v); % normal vector of orbit

10 nh=sqrt(sum(abs(h).^2)); % magnitude of normal
11

12 %%%%%%%%%% FROM MURRAY & DERMOTT %%%%%%%%%
13 mu = G*(m(1)+m(i)); % reduced mass
14 a=1./(2./nr - nv.^2/mu); % semi-major axis
15 e=sqrt(1-nh.^2./(mu*a)); % eccentricity
16 inclination=acos(h(3)./nh);
17 ascnode=asin(h(1)./(nh.*sin(inclination)));
18 if h(3)<0
19 ascnode=-ascnode;
20 end
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 %%%%%%%%%%%%% FROM WIKIPEDIA %%%%%%%%%%%%%
23 evec=cross(v,h)/mu-r/nr;
24 nevec=sqrt(sum(evec.^2));
25 nvec=[cos(ascnode);sin(ascnode);0*ascnode];
26 nnvec=sqrt(sum(nvec.^2,1));
27 argperi=acos(dot(nvec,evec)./(nevec.*nnvec));
28 if evec(3)<0
29 argperi=2*pi-argperi;
30 end
31 trueanom=acos(dot(evec,r)./(nevec.*nr));
32 if dot(r(:),v(:))<0
33 trueanom=2*pi-trueanom;
34 end
35

36 orbitalels(i,1)=e;
37 orbitalels(i,2)=a;
38 orbitalels(i,3)=inclination;
39 orbitalels(i,4)=trueanom;
40 orbitalels(i,5)=argperi;
41 orbitalels(i,6)=ascnode;
42 end
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43 return
44 end
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File: opendat2.m

1 fpath = [input('enter name of directory to contain data files: ','s') '/'];
2

3 mkdir(fpath);
4

5 fq = fopen([fpath 'q.dat'], 'w');
6 fp = fopen([fpath 'p.dat'], 'w');
7

8 phasecoord = [fq fp];
9

10 fm = fopen([fpath 'm.dat'],'w');
11

12 if testerror == 1
13 fqr = fopen([fpath 'qr.dat'], 'w');
14 fpr = fopen([fpath 'pr.dat'], 'w');
15

16 phasecoordr = [fqr fpr];
17 end
18

19 fdetails = fopen([fpath 'integrationdetails.dat'],'w');

File: readdat2.m

1 fpath = [input('enter name of directory containing data files: ','s') '/'];
2

3 fq = fopen([fpath 'q.dat'], 'r');
4 fp = fopen([fpath 'p.dat'], 'r');
5

6 phasecoord = [fq fp];
7

8 fm = fopen([fpath 'm.dat'],'r');
9

10 fqr = fopen([fpath 'qr.dat'], 'r');
11 fpr = fopen([fpath 'pr.dat'], 'r');
12

13 phasecoordr = [fqr fpr];
14

15 fdetails = fopen([fpath 'integrationdetails.dat'],'r');
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File: readdatcomp.m

1 fpath2 =[input...
2 ('enter name of directory containing comparison data files: ','s') '/'];
3

4 fq2 = fopen([fpath2 'q.dat'], 'r');
5 fp2 = fopen([fpath2 'p.dat'], 'r');
6

7 phasecoord2 = [fq2 fp2];
8

9 fm2 = fopen([fpath2 'm.dat'],'r');
10

11 fqr2 = fopen([fpath2 'qr.dat'], 'r');
12 fpr2 = fopen([fpath2 'pr.dat'], 'r');
13

14 phasecoordr2 = [fqr2 fpr2];
15

16 fdetails2 = fopen([fpath2 'integrationdetails.dat'],'r');

File: resumedat2.m

1 fpath = [input('enter name of directory containing data files: ','s') '/'];
2

3 fq = fopen([fpath 'q.dat'], 'r+');
4 fp = fopen([fpath 'p.dat'], 'r+');
5

6 phasecoord = [fq fp];
7

8 fm = fopen([fpath 'm.dat'],'r');
9

10 fqr = fopen([fpath 'qr.dat'], 'r+');
11 fpr = fopen([fpath 'pr.dat'], 'r+');
12

13 phasecoordr = [fqr fpr];
14

15 fdetails = fopen([fpath 'integrationdetails.dat'],'r');

F2. Fortran Integrator

File: asteroid.f90



F2. FORTRAN INTEGRATOR 115

1 module globals
2 integer*8 :: numplan, dimensions, storefrequency, dumpfrequency
3 end module globals
4

5 program asteroid
6 use globals
7

8 integer*8 :: testerror, order, coeffs, method
9 integer*8 :: N, i

10 ! numplan: number of planets
11 ! dimensions: number of spatial dimensions
12 ! N: total number of timesteps
13 ! storefrequency: determines which timesteps are stored
14 ! dumpfrequency: size of buffer
15 ! testerror: whether to integrate backwards in time
16 ! order: order of accuracy
17 ! coeffs: number of integration coefficients
18 double precision :: G, dt, eccentricity, meanmotionratio, e_ast
19 ! G: newton's gravitional constant
20 ! dt: step size
21 ! eccentricity: desired initial eccentricity of asteroid
22 ! meanmotionratio: desired initial mean motion ratio of
23 ! asteroid and jupiter
24 double precision, dimension(2) :: scales
25 ! position and speed scales for asteroid's ICs
26 double precision, allocatable :: a(:), b(:)
27 ! integration coefficients
28 double precision, dimension(4) :: m ! masses
29 double precision, dimension(4) :: vx, vy, vz, qx, qy, qz
30 ! initial condition arrays: x, y, z per planet
31 double precision, dimension(4,3) :: lp, lq
32 ! last written p and q for resuming
33 integer*8 :: li, k1
34 ! li: last fully written integration step for resuming
35 ! k: line number in file
36 ! k1: calculating how much to write to file when resuming
37 double precision, allocatable :: p(:,:), q(:,:)
38 ! actual momentum and position at timestep n
39 double precision, allocatable :: pstore(:,:,:), qstore(:,:,:)
40 ! buffer matrix of p and q values
41 integer*8, dimension(2) :: phasecoord=[1,2], phasecoordr=[3,4]
42 integer*8 :: fm=7, fdetails=8
43 ! handy reference for logical unit numbers
44 character :: fpath*64, paramfname*64, overwrite*1
45 ! directory name for the data files from the integration
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46 ! parameters filesname
47 ! overwrite permission if a run has been completed in
48 ! fpath location
49 logical :: breakrun=.false., fexist=.false., done,&
50 &started, doneforward, fwriteiter
51 ! breakrun: set to true if the integration ends before
52 ! N iterations
53 ! fexist: used in inquiries into existence of files
54 ! done: whether or not a run has been completed in
55 ! directory given by fpath already
56 ! started: whether or not a run has started but not
57 ! finished
58 ! fwriteiter: when resuming reverse run, if it is
59 ! writing for the first time
60 integer*8 :: ios ! iostat result
61 integer*8 :: pos, posr ! file positions for resuming
62

63 namelist /parameters/ eccentricity, meanmotionratio, numplan,&
64 &dimensions, dt, N, storefrequency,&
65 &dumpfrequency, testerror, method,&
66 &fpath, G, m;
67

68 namelist /initconds/ vx, vy, vz, qx, qy, qz;
69 namelist /laststate/ li, lp, lq;
70

71 !namelist /highordercoeffs/ w
72

73 !write(*,'(A)',advance='no') 'Enter name of parameters file: '
74 !read*,paramfname
75 paramfname = 'params.dat';
76

77 inquire(file=trim(paramfname),exist=fexist);
78 if (.not.fexist) then
79 stop 'Parameters file does not exist.'
80 endif
81

82 open(100,file=trim(paramfname));
83

84 ! loop around the main program until the end of params.dat is reached
85 prog: do
86 read(100,nml=parameters, iostat=ios);
87 open(101,file='ics.dat');
88 read(101,nml=initconds);
89 close(101);
90
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91 allocate(p(numplan,dimensions),q(numplan,dimensions));
92 allocate(pstore(numplan,dimensions,dumpfrequency),&
93 &qstore(numplan,dimensions,dumpfrequency));
94

95 inquire(file=trim(fpath)//'/fin', exist=done);
96 if (done) then
97 overwrite = 'n';
98 if (overwrite/='y') then
99 deallocate(p,q);

100 deallocate(pstore,qstore);
101 if (ios == -1) then
102 print*,'reached end of params.dat';
103 exit
104 endif
105 cycle prog
106 endif
107 endif
108

109 inquire(file=trim(fpath)//'/p.dat',exist=started);
110 if (.not.started) then
111 ! do everything normally.
112

113 call generatescales(eccentricity, meanmotionratio, scales);
114

115 if (method == 1) then
116 order = 4;
117 coeffs = 4;
118 elseif (method == 2) then
119 order = 8;
120 coeffs = 16;
121 else
122 order = 2;
123 coeffs = 2;
124 endif
125 allocate(a(coeffs),b(coeffs));
126

127 call setcoeffs(method,coeffs,order,a,b)!,w)
128

129 ! set initial conditions into correct arrays
130 p(1:numplan,1:dimensions) = 0;
131 do i = 1,numplan
132 p(i,1) = vx(i)*m(i);
133 p(i,2) = vy(i)*m(i);
134 p(i,3) = vz(i)*m(i);
135 if (i == 2) then



118 F. CODES

136 p(i,:) = p(i,:)*scales(2);
137 endif
138 enddo
139

140 q(1:numplan,1:dimensions) = 0;
141 do i = 1,numplan
142 q(i,1) = qx(i);
143 q(i,2) = qy(i);
144 q(i,3) = qz(i);
145 if (i == 2) then
146 q(i,:) = q(i,:)*scales(1);
147 endif
148 enddo
149

150 N = ceiling(real(N)/real(storefrequency))*storefrequency;
151

152 call opendatafiles(fpath, phasecoord, phasecoordr, fm, fdetails);
153 open(102,file=trim(fpath)//'/laststate.dat');
154 open(104,file=trim(fpath)//'/resumelineno.dat');
155 close(104);
156

157 li = 0;
158 lp = p;
159 lq = q;
160 write(102,nml=laststate);
161 rewind(102);
162

163 ! write integration details and masses for the
164 ! run to appropriate files
165 do i = 1,size(m)
166 write(fm,300),m(i);
167 enddo
168 write(fdetails,301), numplan, dimensions, dt,&
169 &N, storefrequency,G, testerror,&
170 &method, dumpfrequency, fpath;
171 close(fm);
172 close(fdetails);
173 300 format(e24.17);
174 301 format(i8,/,i1,/,e24.17,/,i16,/,i16,/,e24.17,/,i1,/,i1,/,i16,/,a,/);
175

176 ! here we begin to integrate, storing to buffer and
177 ! writing buffer to disk as needed
178 breakrun = .false.;
179 i = 0;
180 do i=0,N-1
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181 if (mod(i,storefrequency)== 0) then
182 call store(q,p,qstore,pstore,&
183 &mod(i,storefrequency*dumpfrequency)/storefrequency+1);
184 call asteccentricity(p,q,m,G,e_ast);
185 !print*,e_ast
186 if (e_ast > 0.8 .and. .not.breakrun) then
187 breakrun = .true.;
188 print*,'Eccentricity of asteroid ',e_ast,&
189 &' > 0.8 at timestep',i,'\n';
190 endif
191 ! fprintf('%i: stored to buffer\n',i);
192 endif
193 if (mod(i,storefrequency*dumpfrequency)==&
194 &dumpfrequency*storefrequency-1) then
195 call dump(qstore,phasecoord(1));
196 call dump(pstore,phasecoord(2));
197

198 li = i;
199 lp = p;
200 lq = q;
201 write(102,nml=laststate);
202 rewind(102);
203

204 !print*,'Dumped buffer at timestep',i
205 if (breakrun) then
206 N = i;
207 exit;
208 endif
209 elseif (i == N-1) then
210 call dump(qstore,phasecoord(1));
211 call dump(pstore,phasecoord(2));
212

213 li = i;
214 lp = p;
215 lq = q;
216 write(102,nml=laststate);
217 rewind(102);
218

219 !print*,'Dumped buffer at timestep',i
220 endif
221

222 call integrate(p,q,m,G,dt,a,b,coeffs);
223 enddo
224

225 open(111,file=trim(fpath)//'/finforward');



120 F. CODES

226 close(111);
227

228 ! then we integrate backwards if necessary
229 if (testerror == 1) then
230 p = -p;
231 do i = 0,N+storefrequency
232 if (mod(i,storefrequency)==0 .and. i/=0) then
233 call store(q,p,qstore,pstore,&
234 &mod(i-storefrequency,&
235 &storefrequency*dumpfrequency)/storefrequency+1);
236 endif
237 if (mod(i,storefrequency*dumpfrequency)==0 .and. i/=0) then
238 call dump(qstore,phasecoordr(1));
239 call dump(pstore,phasecoordr(2));
240

241 li = i;
242 lp = p;
243 lq = q;
244 write(102,nml=laststate);
245 rewind(102);
246

247 elseif (i == N) then
248 call dump(qstore,phasecoordr(1));
249 call dump(pstore,phasecoordr(2));
250

251 li = i;
252 lp = p;
253 lq = q;
254 write(102,nml=laststate);
255 rewind(102);
256

257 endif
258

259 call integrate(p,q,m,G,dt,a,b,coeffs);
260 enddo
261 endif
262

263 ! finally, loop back and get some new ICs
264 close(phasecoord(1));
265 close(phasecoord(2));
266 close(phasecoordr(1));
267 close(phasecoordr(2));
268

269 open(111, file=trim(fpath)//'fin')
270 close(111)
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271

272 if (ios == -1) then
273 print*,'reached end of params.dat';
274 exit
275 else
276 deallocate(p,q);
277 deallocate(pstore,qstore);
278 deallocate(a,b);
279 cycle prog
280 endif
281

282 else
283 ! Let's find out where the last complete record is, then
284 ! get to a position where we can just integrate normally.
285 ! If testerror == 1, and p.dat/q.dat are full, go through
286 ! pr.dat and qr.dat to find the last completed record and
287 ! continue integrating from there.
288

289 ! WARNING
290 ! This section still does not work correctly.
291

292 if (method == 1) then
293 order = 4;
294 coeffs = 4;
295 elseif (method == 2) then
296 order = 8;
297 coeffs = 16;
298 else
299 order = 2;
300 coeffs = 2;
301 endif
302 allocate(a(coeffs),b(coeffs));
303

304 call setcoeffs(method,coeffs,order,a,b)!,w)
305

306 N = floor(real(N)/real(storefrequency))*storefrequency;
307

308 inquire(file=trim(fpath)//'/finforward', exist=doneforward);
309 if (.not.doneforward) then
310

311 call opendatafilesresume(fpath, phasecoord, phasecoordr);
312 open(102,file=trim(fpath)//'/laststate.dat');
313 open(104,file=trim(fpath)//'/resumelineno.dat',position='append');
314 write(104,105)pos;
315 105 format ('f: ',i10);
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316 close(104);
317

318 read(102,nml=laststate,err=103);
319

320 pos = (li)*numplan*dimensions;
321 k1 = mod(li,dumpfrequency);
322

323 !print*,pos,li,lp,lq
324 p = lp;
325 q = lq;
326

327 do i = 1,storefrequency
328 call integrate(p,q,m,G,dt,a,b,coeffs);
329 enddo
330

331 breakrun=.false.;
332 do i=(li)*storefrequency,N-1
333 if (mod(i,storefrequency)== 0) then
334 pstore(:,:,mod(i,storefrequency*&
335 &dumpfrequency)/storefrequency+1-k1)=p;
336 qstore(:,:,mod(i,storefrequency*&
337 &dumpfrequency)/storefrequency+1-k1)=q;
338 call asteccentricity(p,q,m,G,e_ast);
339 if (e_ast > 0.8) then
340 breakrun = .true.;
341 print*,'Eccentricity of asteroid',&
342 e_ast,'> 0.8 at timestep',i;
343 endif
344 !fprintf('%i: stored to buffer\n',i);
345 endif
346 if (mod(i,storefrequency*dumpfrequency)==&
347 &dumpfrequency*storefrequency-1) then ! write buffer to file
348 call dump(qstore(:,:,1:dumpfrequency-k1),phasecoord(1));
349 call dump(pstore(:,:,1:dumpfrequency-k1),phasecoord(2));
350

351 li = i;
352 lp = p;
353 lq = q;
354 write(102,nml=laststate);
355 rewind(102);
356 if (breakrun) then
357 N = i;
358 exit;
359 endif
360 k1=0;
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361 elseif (i == N-1) then
362 call dump(qstore(:,:,1:dumpfrequency-k1),phasecoord(1));
363 call dump(pstore(:,:,1:dumpfrequency-k1),phasecoord(2));
364

365 li = i;
366 lp = p;
367 lq = q;
368 write(102,nml=laststate);
369 rewind(102);
370 endif
371

372 call integrate(p,q,m,G,dt,a,b,coeffs);
373 enddo
374

375 open(111,file=trim(fpath)//'/finforward');
376 close(111);
377

378 if (testerror == 1) then
379 p = -p;
380 print*,'testerror = true. Reversing flow.';
381 do i = 0,N+storefrequency
382 if (mod(i,storefrequency)==0&
383 &.and. i.ne.0) then ! store current data to buffer
384 pstore(:,:,mod(i-storefrequency,&
385 &storefrequency*dumpfrequency)/storefrequency+1)=p;
386 qstore(:,:,mod(i-storefrequency,&
387 &storefrequency*dumpfrequency)/storefrequency+1)=q;
388 !fprintf('%i: stored to buffer\n',N+storefrequency-i);
389 endif
390 if (mod(i,storefrequency*dumpfrequency)==0 .and. i.ne.0) then
391 call dump(qstore(:,:,1:dumpfrequency-k1),phasecoord(1));
392 call dump(pstore(:,:,1:dumpfrequency-k1),phasecoord(2));
393

394 li = i;
395 lp = p;
396 lq = q;
397 write(102,nml=laststate);
398 rewind(102);
399 k1=0;
400 ! fprintf('%i:- cleared buffer\n',i);
401 elseif (i == N) then
402 call dump(qstore(:,:,1:dumpfrequency-k1),phasecoord(1));
403 call dump(pstore(:,:,1:dumpfrequency-k1),phasecoord(2));
404

405 li = i;
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406 lp = p;
407 lq = q;
408 write(102,nml=laststate);
409 rewind(102);
410

411 exit;
412 ! fprintf('%i: cleared buffer\n',i);
413 endif
414

415 call integrate(p,q,m,G,dt,a,b,coeffs);
416 enddo
417 endif
418

419 ! finally, loop back and get some new ICs from parameters and initconds
420 close(phasecoord(1));
421 close(phasecoord(2));
422 close(phasecoordr(1));
423 close(phasecoordr(2));
424

425 open(111, file=trim(fpath)//'/fin')
426 close(111)
427

428 if (ios == -1) then
429 print*,'reached end of params.dat';
430 exit
431 else
432 deallocate(p,q);
433 deallocate(pstore,qstore);
434 deallocate(a,b);
435 cycle prog
436 endif
437 elseif (testerror == 1) then
438

439 call opendatafilesresume(fpath, phasecoord, phasecoordr);
440 open(102,file=trim(fpath)//'/laststate.dat');
441 open(104,file=trim(fpath)//'/resumelineno.dat',position='append');
442 write(104,106) posr;
443 106 format ('r: ',i10)
444 close(104);
445

446 read(102,nml=laststate,err=103);
447

448 posr = li*numplan*dimensions;
449

450 print*,posr,li,lp,lq
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451 p = lp;
452 q = lq;
453

454 if (li*storefrequency < N) then
455 print*,'Resuming reverse run';
456 breakrun=.false.;
457 fwriteiter=.true.;
458 k1=mod(li,dumpfrequency);
459

460 if (li == 0) then
461 do i = 1,storefrequency
462 call integrate(p,q,m,G,dt,a,b,coeffs);
463 enddo
464 p=-p;
465 else
466 ! this block progresses us to the next timestep
467 ! that would be recorded and avoids the calculation
468 ! going out of phase with an uninterrupted simulation
469 ! from the original ICs.
470 do i = 1,storefrequency
471 call integrate(p,q,m,G,dt,a,b,coeffs);
472 enddo
473 endif
474 do i = li*storefrequency,N+storefrequency
475 if (mod(i,storefrequency)==0 .and. i.ne.0) then
476 pstore(:,:,mod(i-storefrequency,&
477 &storefrequency*dumpfrequency)/storefrequency+1)=p;
478 qstore(:,:,mod(i-storefrequency,&
479 &storefrequency*dumpfrequency)/storefrequency+1)=q;
480 !fprintf('%i: stored to buffer\n',N+storefrequency-i);
481 endif
482 if (fwriteiter .and. mod(i,storefrequency*dumpfrequency)==0) then
483 call dump(qstore(:,:,1:dumpfrequency-k1),phasecoord(1));
484 call dump(pstore(:,:,1:dumpfrequency-k1),phasecoord(2));
485

486 li = i;
487 lp = p;
488 lq = q;
489 write(102,nml=laststate);
490 rewind(102);
491 k1=0;
492 fwriteiter = .false.;
493 ! fprintf('%i:- cleared buffer\n',i);
494 elseif (mod(i,storefrequency*dumpfrequency)==0 .and. i.ne.0) then
495 call dump(qstore(:,:,1:dumpfrequency-k1),phasecoord(1));
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496 call dump(pstore(:,:,1:dumpfrequency-k1),phasecoord(2));
497

498 li = i;
499 lp = p;
500 lq = q;
501 write(102,nml=laststate);
502 rewind(102);
503 k1=0;
504 ! fprintf('%i:- cleared buffer\n',i);
505 elseif (i == N) then
506 call dump(qstore(:,:,1:dumpfrequency-k1),phasecoord(1));
507 call dump(pstore(:,:,1:dumpfrequency-k1),phasecoord(2));
508

509 li = i;
510 lp = p;
511 lq = q;
512 write(102,nml=laststate);
513 rewind(102);
514 exit;
515 ! fprintf('%i: cleared buffer\n',i);
516 endif
517

518 call integrate(p,q,m,G,dt,a,b,coeffs);
519 enddo
520 else
521 print*,'No need to resume reverse run';
522 endif
523 endif
524 endif
525 103 print*,'Error reading last state from disk. Manual recovery required.'
526 close(102);
527 enddo prog
528 close(100);
529 end program asteroid
530

531 module useful
532 contains
533 function ones(n,m)
534 ! outputs a 2D array of ones, with dimensions n x m.
535 integer*8, dimension(n,m) :: ones
536

537 ones(:,:) = 1;
538 end function ones
539

540 function zeros(n,m)
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541 ! outputs a 2D array of zeros, with dimensions n x m.
542 integer*8, dimension(n,m) :: zeros
543

544 zeros(:,:) = 0;
545 end function zeros
546

547 function cross(a,b)
548 ! returns the cross product of length-3 arrays a and b
549 double precision, dimension(3) :: a, b, cross
550

551 cross(1) = a(2)*b(3)-a(3)*b(2);
552 cross(2) = a(3)*b(1)-a(1)*b(3);
553 cross(3) = a(1)*b(2)-a(2)*b(1);
554 end function cross
555 end module useful
556

557 subroutine setcoeffs(method,coeffs,order,a,b)!,w)
558 use globals
559 integer*8 :: method, order, coeffs
560 !double precision :: w(0:7)
561 double precision :: a(coeffs), b(coeffs)
562

563 !namelist /highordercoeffs/ w
564

565 if(method == 1) then
566 ! fourth order coefficients
567 a = [1d0/(2d0*(2d0-2d0**(1d0/3d0))),&
568 &(1d0-2d0**(1d0/3d0))/(2d0*(2d0-2d0**(1d0/3d0))),&
569 &(1d0-2d0**(1d0/3d0))/(2d0*(2d0-2d0**(1d0/3d0))),&
570 &1d0/(2d0*(2d0-2d0**(1d0/3d0)))];
571 b = [1d0/(2d0-2d0**(1d0/3d0)),&
572 &-(2d0**(1d0/3d0))/(2d0-2d0**(1d0/3d0)),&
573 &1d0/(2d0-2d0**(1d0/3d0)),0d0];
574 print*,'using 4-th order forest & ruth';
575 elseif(method == 2) then
576 ! eighth order coefficients
577 !open(101,file='coeffs.dat');
578 !read(101,nml=highordercoeffs);
579 !read(101,nml=highordercoeffs);
580 !read(101,nml=highordercoeffs);
581 !read(101,nml=highordercoeffs);
582 !read(101,nml=highordercoeffs);
583 !close(101);
584

585 !w(0) = 1-2*sum(w);
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586

587 !a(1) = w(7)/2d0;
588 !a(16) = w(7)/2d0;
589 !b(1) = w(7);
590 !b(15) = w(7);
591 !b(16) = 0d0;
592

593 !do i = 2,order-1
594 ! a(i) = (w(order+1-i)+w(order+2-i))/2d0;
595 ! a(2*order-i) = (w(order+1-i)+w(order+2-i))/2d0;
596 ! b(i) = w(order-i);
597 ! b(2*order-i-1) = w(order-i);
598 !enddo
599 !print*,'using 8-th order yoshida';
600 stop 'Sorry, 8-th order routine not implemented';
601 else
602 ! leapfrog coefficients
603 a = [0.5d0, 0.5d0];
604 b = [1d0, 0d0];
605 print*,'using leapfrog';
606 endif
607 end subroutine setcoeffs
608

609 subroutine opendatafiles(fpath, phasecoord, phasecoordr, fm, fdetails)
610 ! opens data files in the correct directories
611 ! for reading/writing/appending
612 logical :: direxist
613 integer*8 :: phasecoord(2), phasecoordr(2), fm, fdetails!, fparams
614 character :: fpath*64
615

616 ! test if the specified path to write to exists: if not, create it.
617 inquire(file=trim(fpath), exist=direxist);
618 if (.not.direxist) then
619 print*,'directory ',trim(fpath),' does not exist. creating it.'
620 call system('mkdir ' // trim(fpath));
621 endif
622

623 open(phasecoord(1), file=trim(fpath)//'/q.dat');
624 open(phasecoord(2), file=trim(fpath)//'/p.dat');
625

626 open(phasecoordr(1), file=trim(fpath)//'/qr.dat');
627 open(phasecoordr(2), file=trim(fpath)//'/pr.dat');
628

629 open(fm, file=trim(fpath)//'/m.dat');
630
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631 open(fdetails, file=trim(fpath)//'/integrationdetails.dat');
632

633 !open(fparams, file=trim(fpath)//'/parameters.dat');
634

635 return
636 end subroutine opendatafiles
637

638 subroutine opendatafilesresume(fpath, phasecoord, phasecoordr)
639 ! opens data files in the correct directories
640 ! for reading/writing/appending
641 logical :: direxist
642 integer*8 :: phasecoord(2), phasecoordr(2)
643 character :: fpath*64
644

645 ! test if the specified path to write to exists: if not, create it.
646 inquire(file=trim(fpath), exist=direxist);
647 if (.not.direxist) then
648 print*,'directory ',trim(fpath),' does not exist. creating it.'
649 call system('mkdir ' // trim(fpath));
650 endif
651

652 open(phasecoord(1), file=trim(fpath)//'/q.dat', position='append');
653 open(phasecoord(2), file=trim(fpath)//'/p.dat', position='append');
654

655 open(phasecoordr(1), file=trim(fpath)//'/qr.dat', position='append');
656 open(phasecoordr(2), file=trim(fpath)//'/pr.dat', position='append');
657

658 return
659 end subroutine opendatafilesresume
660

661 subroutine dump(variable,fileid)
662 ! cycle i through length of var
663 ! for var(i), write using logical unit fileid
664 ! then clear var
665 use globals
666 integer*8 :: fileid
667 double precision :: variable(numplan,dimensions,dumpfrequency)
668

669 write(fileid,200) variable;
670 200 format (e24.17)
671 variable = 0;
672

673 return
674 end subroutine dump
675
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676 subroutine store(q,p,qstore,pstore,i)
677 ! place current value of q and p into a slot in the buffer
678 use globals
679 integer*8 :: i
680 double precision, dimension(numplan,dimensions) :: q, p
681 double precision, dimension(numplan,dimensions,dumpfrequency)&
682 & :: qstore, pstore
683 do j = 1,size(p,1)
684 do k = 1,size(p,2)
685 pstore(j,k,i)=p(j,k);
686 qstore(j,k,i)=q(j,k);
687 enddo
688 enddo
689

690 return
691 end subroutine store
692

693 module vel
694 contains
695 function velocity(p,m)
696 use globals
697 double precision, dimension(numplan,dimensions) :: p, velocity
698 double precision, dimension(numplan) :: m
699 do i = 1,numplan
700 velocity(i,:) = p(i,:)/m(i);
701 enddo
702

703 return
704 end function velocity
705

706 function force(q,G,m)
707 use globals
708 double precision, dimension(numplan,dimensions) :: q, force
709 double precision, dimension(numplan) :: m
710 double precision, dimension(numplan,dimensions,numplan) :: dU, diff
711 double precision, dimension(numplan,numplan) :: denom
712 double precision :: pow = 1.5d0, G
713

714 dU(1:numplan,1:dimensions,1:numplan) = 0;
715 diff(1:numplan,1:dimensions,1:numplan) = 0;
716 denom(1:numplan,1:numplan) = 0;
717 do i = 1,numplan
718 do j = 1,numplan
719 if (i == j) then
720 diff(i,:,j) = 0;
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721 denom(i,j) = 0;
722 dU(i,:,j) = 0;
723 else
724 diff(i,:,j) = -(q(i,:)-q(j,:));
725 do k = 1,dimensions
726 denom(i,j) = denom(i,j)+(diff(i,k,j)**2);
727 enddo
728 dU(i,:,j) = -G*m(i)*m(j)*diff(i,:,j)/(denom(i,j)**pow);
729 endif
730 enddo
731 enddo
732 force = sum(dU,3);
733

734 return
735 end function force
736 end module vel
737

738 subroutine integrate(p,q,m,G,dt,a,b,coeffs)
739 ! perform the integration calculation from step n -> n+1.
740 ! the length and contents of a and b determine which
741 ! symplectic integrator is used.
742 use globals
743 use vel
744 integer*8 :: coeffs
745 double precision, dimension(numplan,dimensions) :: q, p
746 double precision, dimension(numplan) :: m
747 double precision, dimension(coeffs) :: a, b
748 double precision :: G, dt
749 do i = 1,coeffs
750 if (a(i) /= 0) then
751 q = q + a(i)*dt*velocity(p,m);
752 endif
753 if (b(i) /= 0) then
754 p = p - b(i)*dt*force(q,G,m);
755 endif
756 enddo
757

758 return
759 end subroutine integrate
760

761 subroutine asteccentricity(p,q,m,G,eccentricity)
762 use globals
763 use useful
764 double precision, dimension(numplan) :: m
765 double precision, dimension(dimensions) :: r, v, h
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766 double precision, dimension(numplan,dimensions) :: q, p
767 double precision :: G, nr, nv, nh, mu, eccentricity
768

769 r = q(2,:)-q(1,:); ! relative position
770 nr = sqrt(sum(r**2)); ! magnitude of r
771 v = p(2,:)/m(2)-p(1,:)/m(1); ! relative velocity
772 nv = sqrt(sum(v**2)); ! magnitude of v
773 h = cross(r,v); ! normal vector of orbit
774 ! i.e. angular momentum per unit mass
775

776 nh = sqrt(sum(h**2)); ! magnitude of normal
777

778 mu = G*(m(1)+m(2)); ! reduced mass
779 eccentricity=sqrt(1-nh**2*(2*mu-nr*nv**2)/(nr*mu**2));
780

781 end subroutine asteccentricity
782

783 subroutine generatescales(eccentricity, meanmotratio, scales)
784 ! given a desired average eccentricity and average mean motion ratio with
785 ! jupiter (given that the asteroid starts within jupiter's orbit), this
786 ! determines an appropriate pair of scale factors for the asteroid's
787 ! initial conditions (for simplicity having the asteroid start directly on
788 ! the line between jupiter and the sun).
789 use useful
790

791 double precision :: G=2.95912208286e-4, m=1.00000597682, mu, rj, vj, hj,&
792 &meanmotjupi, meanmotasti, a, ajup, eccentricity,&
793 &meanmotratio, h, hsquared
794 ! double precision :: pplus, splus
795 double precision :: pminus, sminus
796 double precision, dimension(2) :: scales
797 double precision, dimension(3) :: vjupi, qjupi, hjupi
798

799 !print*,G,m;
800

801 mu = G*(m+1d-15); ! 1e-15 is the mass of the asteroid
802

803 ! Jupiter's initial state vectors
804 vjupi = [0.00565429, -0.00412490, -0.00190589];
805 qjupi = [-3.5023653,-3.8169847,-1.5507963];
806 hjupi = cross(qjupi,vjupi)
807

808 rj = sqrt(sum(qjupi**2));
809 vj = sqrt(sum(vjupi**2));
810 hj = sqrt(sum(hjupi**2));
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811

812 ajup = 1/(2/rj - vj**2/(G*(m+0.000954786104043)));
813 meanmotjupi = sqrt(G*(m+0.000954786104043)/ajup**3);
814 meanmotasti = meanmotratio*meanmotjupi;
815 a = (mu/meanmotasti**2)**(1/3d0);
816

817 hsquared = mu*a*(1-eccentricity**2)/hj**2;
818 h = sqrt(hsquared);
819

820 ! pplus = a/rj + sqrt((mu*a)**2 - mu*a*hsquared*hj**2)/(mu*rj);
821 ! splus = (h/pplus)*(hj/rj);
822 ! scales(1) = pplus;
823 ! scales(2) = splus;
824

825 pminus = a/rj - sqrt((mu*a)**2 - mu*a*hsquared*hj**2)/(mu*rj);
826 sminus = (h/pminus)*(hj/rj);
827 scales(1) = pminus;
828 scales(2) = sminus;
829 end subroutine generatescales
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File: ics.dat

1 &INITCONDS VX = 0., -0.761576392933587, 0.00565429, 0.00168318,
2 VY = 0., 0.588733316817015, -0.0041249, 0.00483525, VZ = 0.,
3 0.270914155030523, -0.00190589, 0.00192462, QX = 0., 3.5023653,
4 -3.5023653, 9.0755314, QY = 0., 3.8169847, -3.8169847, -3.0458353,
5 QZ = 0., 1.5507963, -1.5507963, -1.6483708,
6 /

File: params.dat This is just one example parameters file:

1 &PARAMETERS ECCENTRICITY = 0.15, MEANMOTIONRATIO = 2.846542,
2 NUMPLAN = 4, DIMENSIONS = 3, DT = 43.31572, N = 8500000,
3 STOREFREQUENCY = 1000, DUMPFREQUENCY = 10000, TESTERROR = 0,
4 METHOD = 1, FPATH = 'Hherror05', G = 0.000295912208286,
5 M = 1.00000597682, 1.E-15, 0.000954786104043, 0.000285583733151
6 /
7 &PARAMETERS ECCENTRICITY = 0.15, MEANMOTIONRATIO = 2.846542,
8 NUMPLAN = 4, DIMENSIONS = 3,
9 DT = .4331572, N = 850000000, STOREFREQUENCY = 100000,

10 DUMPFREQUENCY = 10000, TESTERROR = 0,
11 METHOD = 1, FPATH = 'Hherror06', G = 0.000295912208286,
12 M = 1.00000597682, 1.E-15, 0.000954786104043, 0.000285583733151
13 /
14 &PARAMETERS ECCENTRICITY = 0.15, MEANMOTIONRATIO = 2.846542,
15 NUMPLAN = 4, DIMENSIONS = 3, DT = 43.31572, N = 8500000,
16 STOREFREQUENCY = 1000, DUMPFREQUENCY = 10000, TESTERROR = 0,
17 METHOD = 0, FPATH = 'Hherror07', G = 0.000295912208286,
18 M = 1.00000597682, 1.E-15, 0.000954786104043, 0.000285583733151
19 /
20 &PARAMETERS ECCENTRICITY = 0.15, MEANMOTIONRATIO = 2.846542,
21 NUMPLAN = 4, DIMENSIONS = 3, DT = .4331572, N = 850000000,
22 STOREFREQUENCY = 100000, DUMPFREQUENCY = 10000, TESTERROR = 0,
23 METHOD = 0, FPATH = 'Hherror08', G = 0.000295912208286,
24 M = 1.00000597682, 1.E-15, 0.000954786104043, 0.000285583733151
25 /
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