A-Red’s Advanced Scripting Tutorial
Introduction

Years ago, Ares, the most prolific scripter in Creation, wrote a mapmaking tutorial. That tutorial gives a great sense of the basics of how scripting works, and is the reason that I can script my way out of a paper bag—I’m sure many other mapmakers owe Ares for their skills as well. Unfortunately, the tutorial barely touched on the most advanced map actions, and also unfortunately, they are not intuitive to learn.

I am writing this tutorial to explain (hopefully with the same clarity that the Ares tutorial had) the three map actions that most advanced script revolves around—the Geometry Filter, the Move Marker, and the Munger.

I am going to assume that you already know beginner and intermediate scripting—everything up to and including Test Units, Platoons, and Legions. If you cannot script these actions, I recommend the Ares tutorial. I have a copy of it in my udogs uploads folder, here: http://hl.udogs.net/files/Uploads/%20User%20Uploads/A-Red/Ares%20Full%20Tutorial.zip.
I. The Geometry Filter (GEOM)

The purpose of a GEOM action is to look for units or objects inside of a certain area that meet a set of criteria, and filter those objects into another action or set of actions. At the heart of every GEOM are two parameters: the Results Action Identifier, which specifies another map action that the units or objects will be put into; and the Tested Items Inside Field Name (there are others that you can substitute, but this is the most common), which specifies the type of identifier those units or objects will have.

That may or may not have made any sense at all. The best way to explain script is by giving examples.
So let’s say you have a mob of thralls marching across a river, and a line of warriors defending on the other side. You want every thrall who crosses the river to attack the warriors, and you want the thralls who have not yet crossed to keep on marching. To accomplish this, you have to use a GEOM to take the thralls who have crossed and put them into an attack action. It will look something like this:

NONE All Thralls

Mons_identifier subj: (contains all the marching thralls)

GEOM Find Thralls Who Have Crossed

Link: All Thralls

Polygon: (insert polygon points to cover the side of the river that the warriors are on)

Polygon Closed

Results Action Identifier: Thralls Attack

Tested Items Inside Field Name: subj
Activates on Success: Thralls Attack

ATTA Thralls Attack

Link: Warriors as Targets

The GEOM includes a list of possible subjects (the Link), as well as an area to search (the Polygon). So all of the thralls inside of that polygon will be filtered. Then you have the Results Action Identifier, which says that all filtered Thralls will go into the Attack action, and the Tested Items Inside Field Name which says that all of them will be sent there as subjects (subj mons_identifier, to be more specific). Notice that the Attack action written above does not have attackers, only targets. The GEOM supplies the attackers.

Let’s look at another basic use for GEOMs. If you’ve played the Myth solo campaigns, you’ve probably noticed that at the end of some levels (such as Homecoming and A Murder of Crows), when your units will reach the end of the level, all of the ones that reach a certain area turn uncontrollable and keep going toward the edge. Then, the ones that get there disappear. The process is very similar to what you just did with the Thralls, except that instead of putting your units into one action and then activating it, you put your units into a container, and activate a series of actions that links to the container.
NONE Light Forces (contains your units as subjects)

NONE Units to Make Uncontrollable (leave this EMPTY)

NONE Units to Make Invisible (leave this EMPTY).

GEOM Find Light Forces Near End

Link: Light Forces

Polygon: (insert polygon points to cover the area at the end of the level in which you want your units to become uncontrollable.)

Polygon Closed

Results Action Identifier: Units to Make Uncontrollable

Tested Items Inside Field Name: subj

Activates on Success: Turn Units Uncontrollable

CTRL Turn Units Uncontrollable

Link: Units to Make Uncontrollable

Ignores User Control: true

Received User Control: false

Activates on Success: Move Uncontrollables to Edge

MOVE Move Uncontrollables to Edge

Link: Units to Make Uncontrollable

Waypoints: (insert a point near the edge of the map. Units walking toward this point will later become invisible).
Of course, it isn’t quite over yet. After this, you have another GEOM that filters units even closer to the edge, and puts them into the Units to Make Invisible container and then makes them disappear. By this point, you should have a sense of how to do that.

So far we’ve used Polygons, but there are other ways of searching for things within a GEOM. You could use the Entire Map flag to find things on the entire map, or the Circle Centerpoint and Circle Radius flags together to find things within a radius of a certain point. You’ll pretty much always need either a whole map test or a polygon or a circle, but there are other flags you can add onto these to make your search more specific. Take some time to look over them. You can use Entire Map and Tests for Taunting Units to find all taunters on the map. Or you can use Circle Centerpoint, Circle Radius, and Health Fraction Less Than to find anyone around a certain location who is hurt.

I should also point out that Tested Items Inside Field Name can filter units as plenty of things other than subjects. It can also make them objects (obje), enemies (enem), and basically anything else that can serve as a mons_identifier. Sometimes you will need to use an alternative form, Tested Items Inside Location Field Name, and I’ll give you examples of that later in this tutorial.

Now that you know the basics, let’s take a look at a few slightly more advanced uses for GEOMs.

Suppose you have a bunch of invisible monsters scattered around the edges of the map. You want random monsters from this group to appear at intervals and attack the player. Since they’ll be selected randomly and are all around the map, the player will not know where to expect the attack. You could have a visibility CTRL for each one of them, and an ACLI that randomly selects the visibilities one at a time. But that’s a lot of map actions. Instead, you can use a single GEOM to do the selection.
NONE Invisible Monsters (contains all the monsters)

NONE Selected Monsters (Leave this EMPTY)

GEOM Select A Monster

Link: Invisible Monsters

Entire Map

RIA: Selected Monsters

TIIFN: subj

Choose Random Items

Maximum Number of Items: 1

Use Markers Instead of Monsters

Use Only Uncreated Monsters

Activates on Success: Selected Monster Appears

CTRL Selected Monster Appears

Link: Selected Monsters

Visible Flag

Activates on Success: Selected Monster Attacks

ATTA Selected Monster Attacks

Link: Selected Monsters

Light Forces (obje)

Choose Random Items is self-explanatory. Every time you use it, you will need to specify a Maximum Number of Items—in this case, you could make the monsters come 1 at a time as I have above, or 2 at a time, or 5, or however many you want. Use Markers Instead of Monsters allows you to search for invisible units (and to do so you must include it). Use Only Uncreated Monsters means your search will only include invisible monsters—so your script won’t try to select ones that have already been filtered and made to appear.

The GEOM above should be set to deactivate “on failed execution” so it stops only when there are no more monsters to find, and it should have a trigger time equal to the interval at which you want your monsters to spawn. You can have them appear every 10 seconds, or every between-5-and-500 seconds, or whatever.

Pretty cool, eh?

Until now, we’ve limited our searches to monsters. GEOMs can also be used to find projectiles. Ages ago, someone on the Project Magma forums wanted to have Bowmen who picked up any dropped Fire Arrows that happened to be near them. It turned out that it could be done using a combination of a GEOM and a PICK (Pick Up) action—though unfortunately, a GEOM can only test around a single Bowman at a time. Anyway, it would look like this:

GEOM Find Fire Arrows

Circle Centerpoint (Monster): (insert a single Bowman here)

Circle Radius: 4

Object Type: arfa

RIA: Pick Up Arrows

TIIFN: obje

Choose Random Items

Maximum Number of Items: 1

Activates on Success: Pick Up Arrows

PICK Pick Up Arrows

Objects: (this flag is mandatory, and you can’t make it go away. However, you need to leave it blank. The GEOM will insert an object)

Activates on Success: Find Fire Arrows

(Note that in the script above, the GEOM is set to find one fire arrow at a time, so the Bowman doesn’t get confused constantly trying to go for a new arrow before he has had a chance to pick up the first one he was assigned. The GEOM should also deactivate on success. The PICK action reactivates it, so that you have a cycle.)

To find a projectile, you need to know its four-letter tag identifier. In the GEOM above, I put in “arfa” which is the identifier for “bowman arrow flaming ammo.” You can search for any object this way—to find out its tag identifier, open up the tag and look next to the name.
While we’re on the subject of projectiles, I should briefly point out how to use a “dummy” GEOM. Suppose you’re scripting a level where stealth is of the essence—for example, a level where you control an invisible Pathfinder Dwarf. You want the enemies to ignore him under most circumstances, but if one of his bottles goes off you want them all to be alerted and come after him. You need a GEOM to test for the projectile, because TUNIs can’t do it—however, you don’t actually want to filter the projectile into anything to use it. You just want to know if it’s there. In that case, your RIA should be a blank spacer or a line of text or some other action that doesn’t actually do anything. Your TIIFN should be “null.” You can’t leave them out or leave them blank—if you do, the GEOM won’t do anything at all.
GEOM Find Pathfinder Bottles

Object Type: dwpb (“dwarf pathfinder bottle lit”)

Entire Map

RIA: (blank spacer)

TIIFN: null

Activates on Success: Everyone Attacks Dwarf! Oh No!

The last thing I’d like to point out about GEOMs before I move on to other actions is that RIAs and TIIFNs can be stacked. Remember those Thralls and Warriors at the river crossing, way back in our first example? Suppose you want the Thralls who cross the river to attack the Warriors as before, but at the same time you want the Thralls who have crossed to become targets for the Warriors. You could do two GEOMs, one for each of those purposes—but it turns out (at least in simple cases like this) that you can condense it down into one action.
GEOM Find Thralls Who Have Crossed

Link: All Thralls

Polygon: (same as before)

Polygon Closed

Results Action Identifier: Thralls Attack

 Warriors Attack

Tested Items Inside Field Name: subj

 obje

Activates on Success: Thralls Attack

ATTA Thralls Attack

Targets: Warriors

ATTA Warriors Attack

Attackers: Warriors

What you’ve just done is filter the same group of thralls as attackers for the first ATTA and targets for the second ATTA, at the same time. I don’t know what the limit is—you can filter into at least four actions at once, and probably a lot more. Note that the only real reason to do this is if you want to filter them as different types. If you want several actions to all use those Thralls as subjects, you can just filter them into one Link and use that Link in each of the subsequent actions.

I’ll conclude this section with a warning. GEOMs are the single most complex action in the game in terms of the amount of processing power they require. Therefore, the engine can only handle a few at a time. As of this writing, the current Myth patch is 1.6, and I believe that the limit is still only 6 or 7 GEOMS running at once. Of course, a resourceful scripter can find ways of minimizing the number of GEOMs being used at a time.
Engine limitations aside, by this time the gates have been opened and your mind is probably brimming with all of the possibilities. You’re asking yourself, “What if I want to find all Journeymen within a certain area, pick one, and have him heal any badly injured units near him?”, “What if I want my evil sorceress to detect and blow up any satchel charges nearby so that she can’t be lured into an obvious ambush?”, or “what if I want any Dwarves holding a certain object to become uncontrollable, try to take it to the magic portal where they have to throw it, and at the same time become the sole target for every enemy in the area?”
The answer, of course, is that you can.

II. The Move Marker (MOMA)
On its own, the MOMA action is actually quite simple. It takes an invisible unit (only an invisible unit will work), and moves it instantly to a specified point. You can either move it to a point on the ground, or move it to the exact location of an existing monster. The latter is quite interesting, because it allows you to “swap” one monster for another. This is why on Twice Born Alric starts out with Balmung and then ends up without it—he’s actually two different Alrics, one with the sword and one without. The inventory feature of Myth II 1.6 makes this simple script completely obsolete, but I’ll put a quick example below just to show how it works.
MOMA Switch Alric to No Sword

Subject: (insert Alric with no sword. This is the invisible monster)

Target Monster: (insert Alric with sword, who is currently visible).

Activates on Success: Sword Alric Invisible

No-Sword Alric Visible

If you wanted to put the invisible Alric at some point around the map, you would use Destination instead of Target Monster.

There are a couple of important things to keep in mind when working with MOMAs. First, if you are replacing one monster with another, they must use the same collection (there’s a way around that limitation, and I’ll show it to you momentarily). The second thing is that the monster being moved must be invisible, but also must have been visible at some earlier time. The easiest way to deal with this is to have any monster you want to MOMA visible at the start of the level, off in some remote corner where they can’t be seen, and then immediately have them become invisible using a CTRL. Once you do that, they will be ready for MOMA-ing whenever you need them.
Like I said, it’s quite simple on its own. If you want to do really interesting things with MOMAs, you need to use them in conjunction with GEOMs.

First of all, say you want to have a “shapeshifter” monster who starts as a Warrior but can turn into a wolf. You can’t accomplish this with just a MOMA, because the MOMA requires them to use the same collection, and they don’t. If you have Amber and know how to use it, you can merge them into a single collection and just use a MOMA. However, if that isn’t an option you can use a GEOM to convert the Warrior’s location into a Destination and then move the wolf to there and swap them. This isn’t quite as clean as the basic MOMA, and you’ll probably want your target monster to be uncontrollable and standing still while you move in the replacement.
GEOM Find Warrior’s Location

Link: Warrior

Entire Map

Results Action Identifier: Move Wolf to Warrior’s Location

Tested Items Inside LOCATION Field Name: dest

Activates on Success: Move Wolf to Warrior’s Location

MOMA Move Wolf to Warrior’s Location

Subject: Wolf

(Destination will be inserted by the GEOM)

Activates on Success: Warrior Invisible

Wolf Visible

Note that I used Tested Items Inside Location Field Name instead of the usual Tested Items Inside Field Name. As the name implies, you use this if you are converting a unit or projectile into a location. As far as I know, the identifiers that apply to TIILFN are “cent” (centerpoint), “wayp” (waypoint), and “dest.”
You can also use a regular TIIFN to convert a unit into a “targ” which is the Target Monster used by a MOMA.

The script above just expands on the basic idea of a MOMA by removing one of its annoying limitations. Now, let’s use a MOMA as part of a bigger picture. Suppose you have a Dwarf who dies in a scripted battle at the beginning of a level (like the one on Gate of Storms), and you want a Dwarf ghost to appear over his body when the player reaches the area where he died. The problem is that you don’t have control over where he dies, because during the battle he could have run to any number of points while being attacked by enemies. But you want the ghost to appear directly over his body. By now, you can probably figure out how to do this—just use a GEOM to find the dead body projectile, and convert it to a destination for a MOMA that brings the ghost to that location. And while you’re at it, why not also convert the body to a centerpoint and use it in a test to see whether any player units are nearby? Remember, you can do both in the same GEOM.
GEOM Find Dwarf’s body

Object Type: dw01 (“dwarf dead body”)

Entire Map

RIA: Move Ghost to Body

Player Near Body?

TIILFN: dest

 cent

Activates on Success: Move Ghost to Body

MOMA Move Ghost to Body

Subject: Dwarf Ghost

(Destination added by GEOM)

Activates on Success: Player Near Body?

GEOM Player Near Body?

Link: Light Forces

(Circle Centerpoint added by GEOM)

Circle Radius: 10

RIA: (blank spacer)

TIIFN: null

Activates on Success: Ghost Dwarf Appear

The one trick to the script above is that you have to be certain that only one dwarf body will be on the map to detect. There are a couple of ways to do this. You could make a special version of the dwarf that uses a different body projectile (even an identical duplicate—it will have a different four-letter identification header, and that’s all that matters). Or you could confine your GEOM to a small polygon around the area where you know the dwarf will be killed, and make sure no other dwarves are in that area until after you have completed the MOMA.

There are tons of possibilities for using GEOMs and MOMAs together. Think about how you might use them to create a unit with a “teleport” attack, so that your spellcaster will fire a projectile at a location, disappear, and reappear at that location. Or think about how you can use them to move a group of spiders right over the unsuspecting player’s units and drop them down in their midst. And if you have trouble with either of those scripts, you can find examples of both of them in level 8 of the Chimera campaign.
Now, at long last, we move on to the dreaded Munger.

III: The Munger (MUNG)

“This is something that by general Bungie consensus, users should NEVER mess around with.” —Loathing Documentation.
“Ever seen a house model tip over onto its side and slide horizontally across the mesh for no reason and then you suffer a complete system meltdown and your machine crashes and you have to unplug it? I have. Dont do advanced Mungering.” —Ares

Scared yet? Actually, you shouldn’t be. Maybe I just know what I’m doing, or maybe it’s just that some kind and talented Project Magma programmers have made it a lot safer to use them, but I have never had, nor heard of from any other contemporary scripter, anything like the difficulties that Ares describes. The worst that has ever happened to me was that the Munger didn’t work.

The purpose of a Munger is to alter the parameters of a map action while the game is in progress. It’s less complicated than it sounds.
There are a couple of important rules that you need to be aware of. And given the remote chance of your MUNG turning out to be a scary evil monster, I would be careful to keep them in mind.

First, never Munger an active running GEOM. I have never tried it, but if anything can make a house slide across your screen, this is probably it. Turn the GEOM off, then Munger it, then turn it back on. No big deal.

Second, unlike any other map action type, the order you put the parameters is really important. Every Munger has to be laid out correctly.

The first thing in every MUNG has to be its name. You normally take action names for granted, because they are automatically added in as parameters (in bold) whenever you create an action. In this case, it has to go before anything else. That means you can’t duplicate a Munger to create another one, because if you do it puts the name at the end.
Suppose that you have an ATTA action lying around that was already used earlier in the level. The original attackers are dead, and you want a new group of attackers to be put into the ATTA action so that you can reuse it.
ATTA Monsters A Attack

Attackers: (monsters A go here)

Link: Light Forces as Targets

MUNG Change Attackers to Monsters B

(Name)

Replace Parameters: Monsters A Attack

subj mons_identifier: (monsters B go here)

What the hell did I just do?

Replace Parameters has two purposes. First, it says that you will be replacing parameters in another action—obviously. Second, this is where you specify the action that you want to alter, which in this case is the ATTA action.

The subj mons_identifier is a custom parameter. You will always need to use custom parameters when working with MUNGs, because you could potentially be changing any type of parameter and none of them are included in the MUNG itself.

So what I’ve done with the MUNG above is say that I wanted to replace a parameter in an action called Monsters A Attack, and then said that the parameter I wanted to replace is a subj mons_identifier parameter. You'll see that Replace Parameters, which identifies the action you're going to change, goes first; the custom parameter, which indicates what part of that action you're going to change, goes second.
To be fair, I’m not entirely certain that the name of the MUNG absolutely has to go first. I’ve seen MUNGs in other people’s scripts where the name is last, and haven’t been able to confirm whether they worked or not. However, you must make sure that the name is not between the Replace Parameters and the custom parameter—If it is, that means you’re trying to tell the MUNG to replace the name of another action with the name of the MUNG. God knows what would happen if you tried to do that while the game was running. Maybe nothing. Maybe flying houses.

So you replaced the attackers in an ATTA. So what? Why not just make another ATTA? In this case, it’s probably simpler to do so—I just wanted to use the simplest possible example in order to show you how MUNGs work. Here’s something more practical:

PLAT Baron’s Platoon

Initial Squads: Baron Squad

Stygs Squad

(and some other basic Platoon parameters, which we’re ignoring)

MUNG Remove Stygs from Baron’s Platoon

(Name)

Replace Parameters: Baron’s Platoon

init action_identifier: Baron Squad

What I just did is something like what happens in The Baron. The Baron's platoon goes from having both the Baron and Stygs as squads to just having the Baron, which allows the Stygs to break off and attack the player while the Baron goes on with his Platoon as before.
That’s not the only way to edit a Platoon. Maybe you want the Stygs to change to a vanguard formation when they enter hostile territory. Or maybe you want to check for a player force to the south and make the whole platoon veer north to try to avoid them. You can do it with a Munger. The key is knowing what custom flag to use.

To make custom flags, you just need to do a little bit of research and find an example of the type of parameter you’re Mungering. Since you’re Mungering it, it must already exist in the script for your map. Find it, and see what its name and type are. It will look something like this:

Initial Squads (init, action_identifier)

The part in parentheses is what you use for your custom flag. This is what makes MUNGs so incredibly versatile. You can alter any parameter in any action just like that!
Well, actually that isn’t entirely true. MUNGs cannot edit Activates on Success, Activates on Failure, Deactivates on Success, etc. You might think that this is a problem. Suppose your level starts with a camera motion, and when it is completed it activates a scripted scene with dialogue and other camera motions. Then, when the scene is done, the action starts. It looks something like this:
OBMO Initial Camera Move (activates SOUN on success)

SOUN Start the Dialogue (activates another sound, and so on)

…

ACLI Start the Action

It’s very dramatic, and that’s good for solo play. But what about coop? What if you want the whole scripted scene to be skipped if there are multiple players, so that you and your friends don’t have to wait through it every time you start the level? You would need to test for multiple players, and then edit the Activates on Success, right? But you can’t do that.

Fortunately, I have found a way to work around that problem. It turns out that you can Munger the “Actions to Activate” parameter in an ACLI. So all you need to do is stick in an ACLI as an intermediary step, and edit it instead of the Activates on Success:

OBMO Initial Camera Move (activates ACLI on success)

ACLI Intermediary for Mungering (activates SOUN, for now)

SOUN Start the Dialogue

ACLI Start the Action

PLYC Player Count > 1?

Player Count Greater Than: 1

Activates on Success: Skip Cutscene

MUNG Skip Cutscene

(Name)

Replace Parameters: Intermediary for Mungering

acti action_identifier: Start the Action

You should put a couple of seconds of delay on the intermediary ACLI so that the MUNG has time to edit it before it activates. Since you start with an OBMO, you’ve probably got a delay on it already, but just remember that you need to consider that.
Replace Parameters isn’t the only thing you can do with a MUNG. Two other useful parameters are Insert Parameters and Append Parameters. You would script them in much the same way that you would with Replace. Append Parameters adds a parameter that isn’t already in the action you’re editing. If you wanted the presence of multiple players to also deactivate some actions, you could Append an “Actions to Deactivate” flag into the ACLI above. Insert Parameters is a little trickier. It takes a parameter that already exists and adds onto it (rather than adding a whole parameter). A good use for this is to add onto Links. In the level A Murder of Crows, any prisoners that you free are added to your player force as subjects. Here’s an example.
NONE Light Forces

Link: Starting Forces

NONE Prisoners 1 (with subjects)

TUNI Prison Bars 1 Destroyed?

CTRL Prisoners 1 Controllable

MUNG Add Prisoners 1 to Subjects

(Name)

Insert Parameters: Light Forces

Link: Prisoners 1
Now both the starting force and the prisoners are in the Link.

You can also Delete Parameters, which is the opposite of Append—pretty self-explanatory. The other MUNG parameters all deal with whole actions rather than parameters. You can Delete Actions, Activate Actions, or Deactivate Actions. If you want to Activate or Deactivate, of course, you don’t need a MUNG to do it, although their inclusion can be convenient. Delete, however, is quite useful. Consider the level The Great Library, which has an ACLI that randomly dispatches enemy waves at the player. Each time one is selected, it is then deleted. That way, when the ACLI is activated again, it won’t try to send a wave it already activated. When the ACLI is empty, it fails, and failure triggers the end of the level. For the record, I always put Delete Action and the other action controls at the very end of my MUNGs, to keep the order consistent and clear.
Finally, I should point out that you can edit multiple actions with a single MUNG. Again, there’s probably a limit, but I’ve never run into it. As long as you have the parameters in the order of Name, Action 1, Parameter 1, Action 2, Parameter 2, etc, your MUNG should do what you want it to.
So let’s do a little MUNG review. Suppose you have a sequence of actions carried out by a group of eight Thralls. It looks like this:

NONE Thralls (with subjects)

CTRL Thralls Appear

SQUA Thralls Squad

PLAT Thralls Platoon

PLMO Thralls Patrol

TUNI Thralls Damaged?

ATTA Thralls Attack

Suppose you don’t want them to always be Thralls. Suppose that sometimes you want them to be eight Thralls and sometimes you want them to be six Ghols, and you want the level to choose randomly. Since all the actions link to the same container, you can make the Ghols do everything the Thralls would have done, just by using a MUNG to replace the Thralls in the container with the Ghols.

Now suppose that your eight Thralls were in a short line formation, which is a great formation for eight units. But your six ghols don’t look nearly as good in it. You want them to march in a box formation instead.

Now suppose that you want your Ghols to be ghosts, and flicker with the Ghost Visibility flag. But you don’t want the Thralls to do it, because they aren’t ghosts.
So try this:

ACLI Select Monsters

Actions to Activate: Thralls Appear

 Insert Ghols

Random Selection Flag

MUNG Insert Ghols

(Name)

Replace Parameters: Thralls Container

subj mons_identifier: (Ghols go here)

Append Parameters: Thralls Appear

onii flag: true

Replace Parameters: Thralls Squad

form integer: 4

Actions to Activate: Thralls Appear

NONE Thralls Container (empty for now)

CTRL Thralls Appear

SQUA Thralls Squad

PLAT Thralls Platoon

PLMO Thralls Patrol

TUNI Thralls Damaged?

ATTA Thralls Attack

So either the Thralls will appear and do everything as before, or the Munger will switch everything over to the Ghols, then activate the visibility.

Granted, you could just have two copies of the script, one for the Thralls and one for the Ghols. But the MUNG is far more efficient. In the old days before Myth II 1.6, there could only be about 700 actions on any map. If you had so much script that you went over the limit, the best way to remedy the problem was to use script similar to what is shown above, in order to cut down on map actions. Now the limit is 1024 actions, but it is still possible to overshoot it. If you do, consider MUNGs as a solution. In the meantime, you can use them to save time and space. And there are plenty of things you can do with a MUNG that you simply can’t do without—remember the Baron’s platoon?
So now you know how to use GEOMs, MOMAs, and MUNGs, the most difficult map actions. There is very little that you can’t do on the Myth engine with some combination of these actions. I hope you have as much fun with them as I have.

So are you ready to write a script that randomly selects one of ten different monsters, sends him to the exact location where your warlock just died, and then runs him through a sequence of actions that is subtly different for each possible monster? Are you ready to load up a helicopter, allow it to take the units it picked up and drop them on the other side of the map, and then have enemies that react differently depending on how many units were dropped? Ok, Grasshopper. Show me the money.
